
Reference Manual

IT Mill Toolkit: Reference Manual
IT Mill Toolkit 5.3.0

Published: 2009-03-03
Copyright © 2000-2009 Oy IT Mill Ltd. All rights reserved.

Abstract

IT Mill Toolkit enables developers to build high quality browser user interfaces with Java on server. It provides a library
of ready to use high-quality user interface components and defines a clean framework for creating your own components.
The focus is on ease of use, re-usability, extensibility and meeting the requirements of large enterprise applications.
The toolkit has been used in production since 2001 and it is shown to be suitable for building demanding business ap-
plications.

Table of Contents
Preface ... xiii

1. About This Book ... xiii
1.1. Prerequisites .. xiii
1.2. Organization of This Book .. xiii
1.3. Supplementary Material ... xiii
1.4. Online Resources .. xiii
1.5. Support ... xiv

I. Developer's Guide ... 15
1. Introduction ... 17

1.1. Overview .. 17
1.1.1. Goals and Philosophy ... 18
1.1.2. Background .. 19
1.1.3. Changes in IT Mill Toolkit Release 5 ... 19

1.2. Example Application Walkthrough .. 20
1.2.1. Hello World! ... 20
1.2.2. Calculator .. 21

1.3. What's Inside the IT Mill Toolkit Package? .. 24
1.3.1. Installing .. 24
1.3.2. Package Contents .. 25
1.3.3. Starting the Content Browser ... 26
1.3.4. Running the Demo Applications ... 27

1.4. Getting the Development Environment Up and Running 27
1.4.1. Installing Java SDK ... 28
1.4.2. Installing Eclipse IDE ... 29
1.4.3. Installing Apache Tomcat .. 30
1.4.4. Firefox and Firebug .. 30

1.5. QuickStart with Eclipse ... 31
1.5.1. Importing IT Mill Toolkit as a Project .. 31
1.5.2. How to Run the Demo Applications in Eclipse? 32
1.5.3. How to Debug the Demo Applications in Eclipse? 34
1.5.4. Using QuickStart as a Project Skeleton .. 35

1.6. Your First Project with IT Mill Toolkit .. 35
1.6.1. Creating the Project .. 36
1.6.2. Including IT Mill Toolkit Libraries .. 38
1.6.3. Writing the Code ... 39
1.6.4. Defining Deployment Descriptor .. 41
1.6.5. Ready to Go! .. 42
1.6.6. Starting the Web Server .. 42
1.6.7. Running and Debugging ... 43

2. Architecture ... 47
2.1. Overview .. 47
2.2. Technological Background ... 49

2.2.1. AJAX .. 49
2.2.2. Google Web Toolkit ... 50
2.2.3. JSON .. 50

2.3. Client-Side Engine ... 50
2.4. Events and Listeners ... 51

3. Writing a Web Application ... 55
3.1. Overview .. 55
3.2. Managing the Main Window .. 56
3.3. Child Windows .. 56

iii

3.3.1. Opening and Closing a Child Window ... 56
3.3.2. Window Positioning ... 58
3.3.3. Modal Windows .. 59

3.4. Application-Level Windows ... 60
3.4.1. Creating New Application-Level Windows ... 60
3.4.2. Creating Windows Dynamically ... 61
3.4.3. Closing Windows ... 64
3.4.4. Caveats in Using Multiple Windows .. 64

3.5. Referencing Resources .. 66
3.5.1. Resource Interfaces and Classes ... 66
3.5.2. File Resources .. 67
3.5.3. Class Loader Resources .. 67
3.5.4. Theme Resources .. 67
3.5.5. Stream Resources .. 68

3.6. Error Handling .. 69
3.6.1. Error Indicator and message .. 69
3.6.2. Notifications ... 70

3.7. Application Environment ... 72
3.7.1. Creating Deployable WAR in Eclipse .. 72
3.7.2. Web Application Contents ... 72
3.7.3. Deployment Descriptor web.xml .. 73

3.8. Embedding Applications in Web Pages ... 74
3.8.1. Embedding Inside a <div> Element ... 75
3.8.2. Embedding Inside an <iframe> Element ... 78

4. User Interface Components ... 81
4.1. Overview .. 81
4.2. Label ... 82
4.3. Link .. 84
4.4. TextField .. 85
4.5. Rich Text Area ... 86
4.6. Date and Time Input ... 87

4.6.1. Calendar .. 87
4.6.2. DateField Locale ... 88

4.7. Button .. 88
4.8. Check Box .. 89
4.9. Selecting Items .. 90

4.9.1. Basic Select Component ... 93
4.9.2. Native Selection Component NativeSelect ... 95
4.9.3. Radio Button and Check Box Groups with OptionGroup 95
4.9.4. Twin Column Selection with TwinColSelect ... 96
4.9.5. Allowing Adding New Items .. 96
4.9.6. Multiple Selection Mode ... 97

4.10. Table ... 98
4.10.1. Selecting Items in a Table .. 99
4.10.2. CSS Style Rules ... 100
4.10.3. Table Features ... 102
4.10.4. Generated Table Columns .. 105

4.11. Tree ... 108
4.12. MenuBar .. 109
4.13. Embedded .. 111

4.13.1. Embedded Objects .. 111
4.13.2. Embedded Images .. 112
4.13.3. Browser Frames ... 112

iv

IT Mill Toolkit

4.14. Upload ... 112
4.15. Form ... 115

4.15.1. Form as a User Interface Component .. 115
4.15.2. Binding Form to Data .. 117
4.15.3. Validating Form Input ... 119
4.15.4. Buffering Form Data ... 121

4.16. ProgressIndicator .. 122
4.16.1. Doing Heavy Computation ... 122

4.17. Custom Composite Components .. 123
4.17.1. CustomComponent ... 124

4.18. Common Component Features .. 124
4.18.1. Sizing Components through Sizeable interface 124

5. Managing Layout .. 127
5.1. Background for Layout .. 127
5.2. Layout Components .. 128

5.2.1. VerticalLayout and HorizontalLayout ... 128
5.2.2. GridLayout .. 131
5.2.3. Panel ... 135
5.2.4. TabSheet ... 136

5.3. Layout Formatting .. 138
5.3.1. Layout Size .. 138
5.3.2. Layout Cell Alignment .. 140
5.3.3. Layout Cell Spacing ... 141
5.3.4. Layout Margins ... 143

5.4. Custom Layouts ... 144
6. Themes ... 147

6.1. Overview .. 147
6.2. Introduction to Cascading Style Sheets ... 148

6.2.1. Basic CSS Rules .. 148
6.2.2. Matching by Element Class .. 149
6.2.3. Matching by Descendant Relationship ... 150
6.2.4. Notes on Compatibility ... 152

6.3. Creating and Using Themes .. 153
6.3.1. Styling Standard Components .. 153
6.3.2. Using Themes ... 155
6.3.3. Theme Inheritance ... 156

7. Data Model .. 157
7.1. Overview .. 157
7.2. Properties ... 158
7.3. Holding properties in Items .. 158
7.4. Collecting items in Containers .. 158

8. Developing Custom Components ... 161
8.1. Overview .. 161
8.2. Google Web Toolkit Widgets .. 163

8.2.1. Extending an IT Mill Toolkit Widget .. 163
8.2.2. Example: A Color Picker GWT Widget .. 163
8.2.3. Styling GWT Widgets ... 165

8.3. Integrating a GWT Widget ... 166
8.3.1. Deserialization of Component State from Server 167
8.3.2. Serialization of Component State to Server ... 168
8.3.3. Example: Integrating the Color Picker Widget 170

8.4. Defining a Widget Set ... 171
8.4.1. GWT Module Descriptor ... 172

8.5. Server-Side Components .. 172

v

IT Mill Toolkit

8.5.1. Server-Client Serialization ... 173
8.5.2. Client-Server Deserialization .. 173
8.5.3. Extending Standard Components .. 173
8.5.4. Example: Color Picker Server-Side Component 174

8.6. Using a Custom Component ... 175
8.6.1. Example: Color Picker Application .. 175
8.6.2. Web Application Deployment ... 176

8.7. GWT Widget Development .. 176
8.7.1. Creating a Widget Project in Eclipse .. 177
8.7.2. Importing GWT Installation Package ... 177
8.7.3. Creating a GWT Module ... 178
8.7.4. Compiling GWT Widget Sets ... 179
8.7.5. Ready to Run .. 180
8.7.6. Hosted Mode Browser .. 181
8.7.7. Out of Process Hosted Mode (OOPHM) ... 186

9. Advanced Web Application Topics .. 187
9.1. Debug and Production Mode .. 187

9.1.1. Debug Mode ... 187
9.1.2. Analyzing Layouts ... 188
9.1.3. Custom Layouts ... 189
9.1.4. Debug Functions for Component Developers ... 189

9.2. Special Characteristics of AJAX Applications .. 189
9.3. Resources ... 190

9.3.1. URI Handlers .. 190
9.3.2. Parameter Handlers .. 191

9.4. Shortcut Keys .. 193
9.5. Printing .. 195

10. User Interface Definition Language (UIDL) ... 197
10.1. API for Painting Components .. 198
10.2. JSON Rendering ... 199

Bibliography ... 201

vi

IT Mill Toolkit

List of Figures
1.1. IT Mill Toolkit General Architecture .. 17
1.2. IT Mill Toolkit Package Contents .. 25
1.3. Development Toolchain and Process .. 28
1.4. Firebug Debugger for Firefox ... 31
1.5. IT Mill Toolkit Imported as a Project in Eclipse ... 32
1.6. IT Mill Toolkit Content Browser Started Under Eclipse ... 33
1.7. Terminating a Launch ... 34
1.8. Removing Terminated Launches ... 34
1.9. Execution Stopped at Breakpoint in Debug Perspective in Eclipse ... 35
1.10. A New Dynamic Web Service Project ... 37
1.11. A Ready Project ... 42
1.12. Running an IT Mill Toolkit Application .. 44
1.13. Debugging an IT Mill Toolkit Application ... 45
2.1. IT Mill Toolkit Architecture ... 47
2.2. Architecture of IT Mill Toolkit Client-Side Engine ... 51
2.3. Class Diagram of a Button Click Listener ... 52
3.1. Opening a Child Window ... 58
3.2. Screenshot of the Modal Window Demo Application ... 59
3.3. Synchronization Error Between Windows with the Same Name .. 62
3.4. A Dynamically Created Window ... 63
3.5. Opening Windows .. 64
3.6. Communication Between Two Application-Level Windows .. 65
3.7. Resource Interface and Class Diagram ... 67
3.8. Screenshot of the stream resource example with an embedded image 69
3.9. Error indicator active .. 70
3.10. Notification ... 70
3.11. Notification with Formatting ... 71
3.12. Embedded Application .. 77
3.13. IT Mill Toolkit Applications Embedded Inside IFrames ... 79
4.1. UI Component Inheritance Diagram .. 81
4.2. The Label Component ... 82
4.3. Label Modes Rendered on Screen ... 84
4.4. Referencing An Image Resource in Label ... 84
4.5. Single- and Multi-Line Text Field Example ... 85
4.6. Rich Text Area Component .. 86
4.7. Regular English and a Localized Rich Text Area Toolbar ... 86
4.8. Example of the Date Field with Default Style .. 87
4.9. Example of the Date Field with Calendar Style .. 88
4.10. An Example of a Button ... 88
4.11. An Example of a Check Box ... 89
4.12. Retrieval of the Currently Selected Item .. 91
4.13. The Select Component ... 93
4.14. Filtered Selection ... 94
4.15. Radio Button Group .. 95
4.16. Twin Column Selection ... 96
4.17. Select Component with Adding New Items Allowed .. 96
4.18. Basic Table Example ... 99
4.19. Table Selection Example .. 100
4.20. Cell Style Generator for a Table ... 102
4.21. Components in a Table ... 104
4.22. A Table in Normal and Editable Mode .. 105

vii

4.23. Table with Generated Columns in Normal and Editable Mode ... 108
4.24. A Tree Component as a Menu ... 109
4.25. Menu Bar .. 110
4.26. Embedded Image .. 111
4.27. Upload Component ... 113
4.28. Image Upload Example .. 115
4.29. Layout of the Form Component ... 115
4.30. Form Automatically Generated from a Bean ... 118
4.31. Form Fields Generated with a FieldFactory .. 119
4.32. Form Validation in Action ... 120
4.33. Empty Required Field After Clicking Commit .. 121
4.34. The Progress Indicator Component ... 122
4.35. Starting Heavy Work ... 123
5.1. Component Widths in HorizontalLayout ... 129
5.2. The Grid Layout Component .. 132
5.3. Expanding Rows and Columns in GridLayout .. 134
5.4. A Panel Layout .. 135
5.5. A Panel with Light Style .. 136
5.6. A Simple TabSheet Layout ... 137
5.7. A TabSheet with Hidden and Disabled Tabs ... 138
5.8. HorizontalLayout with Undefined vs Defined size .. 138
5.9. Cell Alignments ... 140
5.10. Layout Spacings ... 142
5.11. Layout Margins .. 144
5.12. Example of a Custom Layout Component .. 145
6.1. Theme Contents ... 147
6.2. Simple Styling by Element Type .. 149
6.3. Matching HTML Element Type and Class ... 150
6.4. Matching Only HTML Element Class .. 150
6.5. Themeing Login Box Example with Default Theme .. 151
6.6. Themeing Login Box Example with Custom Theme .. 152
7.1. IT Mill Toolkit Data Model .. 157
8.1. Color Picker Module ... 162
8.2. GWT Widget Base Class Hierarchy ... 163
8.3. Color Picker Widget Without Styling .. 165
8.4. Color Picker Widget With Styling .. 166
8.5. Annotated Project Contents .. 180
8.6. Hosted Mode Browser ... 181
8.7. Creating New Launch Configuration .. 182
8.8. Naming Launch Configuration .. 183
8.9. GWTShell Arguments ... 184
8.10. Setting a Breakpoint .. 185
8.11. Debugging with Hosted Mode Browser ... 185
9.1. Debug Window .. 187
9.2. Debug Window Showing the Result of Analyze layouts. .. 189
9.3. Dynamic Resource with URI Parameters ... 193
10.1. Debugging UIDL Messages with Firebug .. 199

viii

IT Mill Toolkit

List of Tables
3.1. Types of Notifications ... 71
3.2. toolkitConfigurations parameters ... 75
4.1. Content Modes for Label ... 83
4.2. Selection Components ... 90
4.3. Caption Modes for Selection Components ... 92
4.4. Type to Field Mappings in BaseFieldFactory .. 105
4.5. Embedded Object Types .. 111
4.6. Size Units ... 125
5.1. Alignment Constants ... 141
5.2. Alignment Bitmasks .. 141
5.3. Spacing Style Names .. 142
6.1. Default CSS Style Names of IT Mill Toolkit Components .. 154
8.1. UIDL Variable Types ... 169

ix

x

List of Examples
1.1. HelloWorld.java ... 20
1.2. Calc.java .. 22
1.3. Web.xml Deployment Descriptor for a Project ... 41
3.1. web.xml ... 73

xi

xii

Preface
1. About This Book

This book is intended for software developers who use IT Mill Toolkit to develop web applications.

1.1. Prerequisites

This book assumes that you have some experience with programming in Java. If not, Java is easy to learn
if you have experience with other object oriented languages, such as C++. You may have used some
desktop-oriented user interface toolkits for Java, such as AWT, Swing, or SWT. Or for C++, a toolkit such
as Qt. Such knowledge is useful for understanding the scope of the Toolkit, but not necessary. Regarding
the web, it is good if you know the basics of HTML and CSS, so that you can develop basic presentation
themes for the application. Knowledge of Google Web Toolkit (GWT), JavaScript, and AJAX is needed
only if you develop special custom UI components.

1.2. Organization of This Book

The IT Mill Toolkit Reference Manual is divided into two parts: Developer's Guide and API Reference.

The Developer's guide first gives an introduction to what IT Mill Toolkit is and how you use it to develop
web applications. It then proceeds to architecture, particular components and features of the Toolkit, to
special topics, and finally to special design patterns for the Toolkit.

API Reference gives the full documentation for particular classes and interfaces, and their methods. The
API documentation is also available in JavaDoc format, as a HTML page with frames.

1.3. Supplementary Material

Demo Application

The installation package of IT Mill Toolkit includes a demo application that you can simply run and use
with a web browser. You can view the source code of the individual demo applications from the main
menu. The demo application includes a feature browser, which offers demonstration of most user interface
components in IT Mill Toolkit.

You can find the demo application also online at http://toolkit.itmill.com/demo/.

1.4. Online Resources

Developer's Site

The IT Mill Toolkit Developer's Site [http://dev.itmill.com/] provides various online resources, such as a
development wiki, ticket (bugs and other issues) management system, source repository browsing, timeline,
development milestones, and so on.

• Checkout IT Mill Toolkit source code from the Subversion repository

• Read technical articles and get more examples

• Report bugs

• Make requests for enhancements

xiii

http://toolkit.itmill.com/demo/
http://dev.itmill.com/
http://dev.itmill.com/

• Follow the development of the Toolkit

• Collaborate!

The wiki provides instructions for developers, especially for those who wish to checkout and compile IT
Mill Toolkit itself from the source repository. The technical wiki articles deal with integration of IT Mill
Toolkit applications with various systems, such as JSP, Maven, Spring, Hibernate, and portals. The wiki
also provides answers to Frequently Asked Questions.

Online Documentation

You can read this book online at http://www.itmill.com/documentation/. You can find technical articles
and answers to Frequently Asked Questions also from the Developer's Site [http://dev.itmill.com/].

1.5. Support

Support Forum

An open support forum for developers is available at http://forum.itmill.com/. Please use the forum to
discuss any problems you might encounter, wishes about features, and so on.

• Share your ideas and code

• Ask and you get answers

• Search answers from archived discussions

Bug Report Form

If you have found an issue with IT Mill Toolkit, demo applications or documentation, please report it to
us by filing a ticket in the IT Mill Toolkit developer's site at http://dev.itmill.com/. You may want to check
the existing tickets before filing a new ticket. You can make a ticket to make a request for a new feature
as well, or to suggest modifications to an existing feature.

Commercial Support

IT Mill offers full commercial support and training services for the IT Mill Toolkit products. Please contact
our sales at http://www.itmill.com/itmill_contact_sales.htm for details.

xiv

Preface
Support

http://www.itmill.com/documentation/
http://dev.itmill.com/
http://dev.itmill.com/
http://forum.itmill.com/
http://dev.itmill.com/
http://www.itmill.com/itmill_contact_sales.htm

Part I. Developer's Guide

Chapter 1. Introduction
This chapter provides an introduction to software development with IT Mill Toolkit, including installation
of the Toolkit, the Eclipse development environment, and any other necessary or useful utilities. We look
into the design philosophy behind the Toolkit and at the changes in IT Mill Toolkit Release 5.

1.1. Overview

IT Mill Toolkit is essentially a Java library that is designed to make creation and maintenance of high
quality web-based user interfaces easy. The key idea is that the Toolkit allows you to forget the web and
lets you program user interfaces much like you would program any Java desktop application with conven-
tional toolkits such as AWT, Swing, or SWT. But easier.

Figure 1.1. IT Mill Toolkit General Architecture

While traditional web programming is a fun way to spend your time learning new web technologies and
debugging them, you probably want to be productive and concentrate on the application logic. The library
takes care of user interface rendering in the browser and AJAX communications between the browser and
the server. With Toolkit's approach, you do not need to learn and debug browser technologies, such as
HTML or JavaScript.

IT Mill Toolkit makes the best use of AJAX (Asynchronous JavaScript and XML) techniques that enable
the creation of web applications as responsive and interactive as desktop applications. While conventional
JavaScript-enabled HTML pages can receive new content only with page updates, AJAX-enabled pages
can ask the server for updated content using the asynchronous XMLHttpRequest JavaScript request.
User interaction with UI components is communicated to the server. The IT Mill Toolkit framework inter-
prets the events and communicates them to your application logic. Any user interface feedback is rendered
in the response message to the AJAX request.

17

Hidden well under the hood, IT Mill Toolkit uses GWT, the Google Web Toolkit, for rendering the user
interface in the browser. GWT programs are written in Java, but compiled into JavaScript, thus freeing the
developer from learning JavaScript and other browser technologies. GWT is ideal for implementing advanced
user interface components (or widgets in GWT terminology) and interaction logic in the browser, while
IT Mill Toolkit handles the actual application logic in the server. IT Mill Toolkit is designed to be extensible,
and you can indeed use any 3rd-party GWT components easily, in addition to the component repertoire
offered in IT Mill Toolkit. The use of GWT also means that all the code you need to write is pure Java.

Because HTML and other browser technologies are invisible to the application logic, you can think of the
web browser as only a thin client platform. A thin client displays the user interface and communicates user
events to the server at a low level. The control logic of the user interface runs on a Java-based web server,
together with your business logic. By contrast, a normal client-server architecture with a dedicated client
application would include a lot of application specific communications between the client and the server.
Essentially removing the user interface tier from the application architecture makes our approach a very
effective one.

The Toolkit library defines a clear separation between user interface presentation and logic and allows you
to develop them separately. Our approach to this is themes, which dictate the visual appearance of applic-
ations. Themes control the appearance of the user interfaces using CSS and (optional) HTML page templates.
As the Toolkit provides excellent default themes, you do not usually need to make much customization,
but you can if you need to. For more about themes, see Chapter 6, Themes.

We hope that the description above is enough about architecture for now. You can read more about it later
in Chapter 2, Architecture. Let us next look at some of the core ideas behind IT Mill Toolkit.

1.1.1. Goals and Philosophy

Simply put, as its name implies, the Toolkit's ambition is to be the best possible tool when it comes to
creating web user interfaces for business applications. It is easy to adopt, as it is designed to support both
entry-level and advanced programmers, as well as usability experts and graphical designers.

When designing the Toolkit, we have followed the philosophy inscribed in the following rules.

Right tool for the right purpose

Because our goals are high, the focus must be clear. This toolkit is designed for creating web applications.
It is not designed for creating websites or advertisements demos. You should use JSP/JSF and Flash for
such purposes.

Simplicity and maintainability

We have chosen to emphasize robustness, simplicity, and maintainability over the possibility to "draw"
user interfaces with visual design tools. For serious business applications, you have to program the user
interfaces anyway and the visual design tools just get in the way.

XML is not designed for programming

The Web is inherently document centered and very much bound to the declarative presentation of user in-
terfaces. Toolkit's framework frees the programmer from these limitations. It is far more natural to create
user interfaces by programming them than by defining them in the various XML dialects.

Tools should not limit your work

There should not be any limits on what you can do with the framework: if for some reason the user interface
components do not support what you need to achieve, it must be easy to add new ones to your application.

18

Introduction
Goals and Philosophy

When you need to create new components, the role of the framework is critical: it makes it easy to create
re-usable components that are easy to maintain.

1.1.2. Background

The library was not written overnight. After working with web user interfaces since the beginning of the
Web, a group of developers got together in 2000 to form IT Mill. The team had a desire to develop a new
programming paradigm that would support the creation of real user interfaces for real applications using
a real programming language.

The library was originally called Millstone Library. The first version was used in a large production applic-
ation that IT Mill designed and implemented for an international pharmaceutical company. IT Mill made
the application already in the year 2001 and it is still in use. Since then, the company has produced dozens
of large business applications with the library and it has proven its ability to solve hard problems easily.

The next generation of the library, IT Mill Toolkit Release 4, was released in 2006. It introduced an entirely
new AJAX-based presentation engine. This allowed the development of AJAX applications without the
need to worry about communications between the client and the server.

The latest generation, IT Mill Toolkit Release 5, takes a significant step further into AJAX. The client-side
rendering of the user interface has been rewritten using GWT, the Google Web Toolkit. This allows the
use of Java for developing all aspects of the framework. It also allows easy integration of existing GWT
components with IT Mill Toolkit.

IT Mill Toolkit Release 5 was released under the Apache open source license and the development of the
toolkit .

1.1.3. Changes in IT Mill Toolkit Release 5

Release 5 of IT Mill Toolkit introduces a number of changes in the API, the client-side customization
layer, and themes. See the Release Notes in the installation package of IT Mill Toolkit for a more detailed
listing of changes.

We have decided to introduce some important API improvements in Release 5. Many of the user interface
components in Release 4 and before were available as styles for a basic set of components. For example,
the Select class allowed selection of items from a list. Normally, it would show as a dropdown list, but
setting setStyle("optiongroup") would change it to a radio button group. In Release 5, we have
obsoleted the setStyle() method and provided distinct classes for such variations. For example, we
now have OptionGroup that inherits the AbstractSelect component. In a similar fashion, the Button
component had a switchMode attribute, set with setSwitchMode(), that would turn the button into
a check box. Release 5 introduces a separate CheckBox component. The setStyle() method actually
had a dual function, as it was also used to set the HTML element class attribute for the components to
allow styling in CSS. This functionality has been changed to addStyle() and removeStyle()
methods.

The OrderedLayout is replaced (since the first stable version 5.3.0) with specific VerticalLayout and
HorizontalLayout classes.

Release 5 introduces expansion ratio for applicable layout components. It allows you to one or more
components as expanding and set their relative expansion sizes. The components will stretch to expand
the layout to maximum size inside its container. The release also introduces a number of new user interface
components: SplitPanel, Slider, Notification to display a popup notification window, and RichTextEditor
to allow editing formatted text.

19

Introduction
Background

The Client-Side Engine of IT Mill Toolkit has been entirely rewritten with Google Web Toolkit. This does
not, by itself, cause any changes in the API of IT Mill Toolkit, because GWT is a browser technology that
is well hidden behind the IT Mill Toolkit API. Transition from JavaScript to GWT makes the development
and integration of custom components and customization of existing components much easier than before.
It does, however, require reimplementation of any existing custom client-side code with GWT. See Chapter 2,
Architecture for more information on the impact of GWT on the architecture and Chapter 8, Developing
Custom Components for details regarding creation or integration of custom client-side components with
GWT.

IT Mill Toolkit Release 5 introduces an entirely new architecture for themes. Themes control the appearance
of web applications with CSS and can include images, HTML templates for custom layouts, and other related
resources. The old themeing architecture in Release 4 required use of some JavaScript even in the simplest
themes, and definition of a theme XML descriptor. In Release 5, you simply include the CSS file for the
theme and any necessary graphics and HTML templates for custom layouts. For more details on the revised
theme architecture, see Chapter 6, Themes. Old CSS files are not compatible with Release 5, as the HTML
class style names of components have changed. As GWT implements many components with somewhat
different HTML elements than what IT Mill Toolkit Release 4 used, styles may need to be updated also
in that respect.

1.2. Example Application Walkthrough

Let us follow the long tradition of first saying "Hello World!" when learning a new programming environ-
ment. After that, we can go through a more detailed example that implements the model-view-controller
architecture. The two examples given are really simple, but this is mostly because IT Mill Toolkit is designed
to make things simple.

1.2.1. Hello World!

Example 1.1. HelloWorld.java

import com.itmill.toolkit.ui.*;

public class HelloWorld extends com.itmill.toolkit.Application {

 public void init() {
 Window main = new Window("Hello window");
 setMainWindow(main);
 main.addComponent(new Label("Hello World!"));
 }
}

The first thing to note is that the example application extends com.itmill.toolkit.Application class. The
Application class is used as the base class for all user applications. Instances of the Application are essen-
tially user sessions, and one is created for each user using the application. In the context of our HelloWorld
application, it is sufficient to know that the application is started when the user first accesses it and at that
time init method is invoked.

Initialization of the HelloWorld application first creates a new window and sets "Hello window" as its
caption. The window is then set as the main window of the application. This means that when a user
launches the application, the contents of the main window are shown to the user. The caption is shown as
the title of the (browser) window.

A new user interface component of class com.itmill.toolkit.ui.Label is created. The label is
set to draw the text "Hello World!". Finally, the label is added to the main window. And here we are, when
the application is started, it draws the text "Hello World!" to the browser window.

20

Introduction
Example Application Walkthrough

The following screenshot shows what the "Hello World!" program will look like in a web browser.

Example 1.1, “HelloWorld.java” implements our "Hello World!" program. Before going into details, we
should note that this example source code is complete and does not need any additional declaratively
defined template files to be run. To run the program, you can just add it to your web application explained
in Section 3.7, “Application Environment”.

1.2.2. Calculator

One of the most amazing, or dare we say annoying, things about modern computers is that while they cost
hundreds if not thousands of currency units, they are less useful for calculations than an abacus. Recent
operating systems have taken a significant step forward by including a trivial calculator program with almost
every computer. Our little version below takes some 50 lines of code.

Let us first see what it should look like.

We all have to admit it, the calculator is not very beautiful with the gray buttons and backgrounds and all.
In Chapter 6, Themes, we will show you how to excel in beauty, but for now we keep it dull and gray.

Let us look how it was done. Example 1.2, “Calc.java” implements a simple calculator that can do add,
subtract, divide and multiply operations. Of course, this is not too useful to do with a server-based applic-
ation, but it demonstrates event management, layout management, and a few other features of IT Mill
Toolkit nicely.

21

Introduction
Calculator

Example 1.2. Calc.java

import com.itmill.toolkit.ui.*;

public class Calc extends com.itmill.toolkit.Application implements
 Button.ClickListener {

 private Label display = null;
 private double stored = 0.0;
 private double current = 0.0;
 private String operation = "C";
 private static String[] captions = // Captions for the buttons
 { "7", "8", "9", "/", "4", "5", "6", "*", "1", "2", "3", "-", "0", "=",
 "C", "+" };

 public void init() {

 // Create a new layout for the components used by the calculator
 GridLayout layout = new GridLayout(4, 5);

 // Create a new label component for displaying the result
 display = new Label(Double.toString(current));
 display.setCaption("Result");

 // Place the label to the top of the previously created grid.
 layout.addComponent(display, 0, 0, 3, 0);

 // Create the buttons and place them in the grid
 for (int i = 0; i < captions.length; i++) {
 Button button = new Button(captions[i], this);
 layout.addComponent(button);
 }

 // Create the main window with a caption and add it to the application.
 addWindow(new Window("Calculator", layout));

 }

 public void buttonClick(Button.ClickEvent event) {

 try {
 // Number button pressed
 current = current * 10
 + Double.parseDouble(event.getButton().getCaption());
 display.setValue(Double.toString(current));
 } catch (java.lang.NumberFormatException e) {

 // Operation button pressed
 if (operation.equals("+"))
 stored += current;
 if (operation.equals("-"))
 stored -= current;
 if (operation.equals("*"))
 stored *= current;
 if (operation.equals("/"))
 stored /= current;
 if (operation.equals("C"))
 stored = current;
 if (event.getButton().getCaption().equals("C"))
 stored = 0.0;
 operation = event.getButton().getCaption();
 current = 0.0;
 display.setValue(Double.toString(stored));
 }
 }
}

22

Introduction
Calculator

Let us next look at the architecture of this marvellous piece of modern technology by considering it from
the perspective of the model-view-controller (MVC) design pattern. MVC is central to any decent user
interface design, so we will revisit it frequently later in this guide. Our first example is actually not a very
good example of MVC, but that is mainly to keep the size of the example below 50 lines. The main benefit
is learning to think through the design pattern.

Model

The application has an internal state that is simply stored in the member variables of the the Calculator:

• stored is the last value entered to the calculator before the value that is now displayed.

• current is the value that is currently shown on the calculator's display.

• operation is the previously selected operation that will be done between stored and
current when entering the current value is finished.

When thinking in the terms of the Model-View-Controller paradigm, the above variables form the model
part together with the calculation logic. In most applications, the model should be well separated from the
view and controller. IT Mill Toolkit provides good support for completely isolating the model from user
interface logic. In this example, further separation would only make the application more complex.

View

As with HelloWorld, the application extends com.itmill.toolkit.Application and initializes itself in the
init() method. In this method, you need to initialize the user interface of the application and anything
else that needs to be initialized when the application starts.

The user interface is laid out with the GridLayout layout management object. It provides an easy way to
position components in a tabular layout; you just specify that the layout has four columns and add the
components to the layout. In the Calculator example, we first create and add the display component of the
calculator as a Label and then all the Button components in a for loop.

Construction of user interface component trees can be done freely in any order the programmer wants to.
In the HelloWorld example, we added the Label component to the Window. To provide an example, we
set the layout in the constructor of the Window object. This is in essence almost the same: if the layout is
not specified for the Window, it uses VerticalLayout by default and adding components to a Window
adds them to its layout. Here we replace the default VerticalLayout and use GridLayout instead. Then
we just add the Window to the Application. As this is the first Window in the application, it is automat-
ically recognized as the main window.

Notice that programming the user interface is done on logical level -- nothing is said about colors, fonts,
how buttons behave, and such. This is all specified in the theme of the application. This separation of ap-
pearance is important as it frees the application programmer from the compexity of details related to look
and feel. It also makes it possible to maintain the looks as separate themes -- possibly left for the visual
designers.

Controller

Programming a "controller" in IT Mill Toolkit is not very different from Swing or any other event-based
user interface framework. You just attach event handlers to components and program the application logic
in those handlers. The toolkit manages all the complexity of creating event handlers in the browser, their
memory management issues, network transport of actions with AJAX, security, etc. Keeping all these "out
of the way", the programmer can focus on the application itself.

23

Introduction
Calculator

In the Calculator example, all buttons are assigned to send their events to the application by saying in the
Button constructor that the Button should send the event to this and implementing Button.Clicklistener
interface. All the events in this example are sent to the same listener method, buttonClick(). To keep
the example simple, the listener decides what to do according to the caption of the button from the received
event.

The logic in the listener is fairly simple - if the caption is a number, it is added as the next digit to the
current variable and the value of current is copied to the display component. Notice that IT Mill
Toolkit handles all sending of UI changes to web browser automatically -- it decides what parts of the
screen need to be repainted and updates only them. For other buttons, the application state is updated ac-
cording to the button pressed and the display component is also updated.

1.3. What's Inside the IT Mill Toolkit Package?

This section gives an overview of the IT Mill Toolkit package and its installation.

1.3.1. Installing

Installing IT Mill Toolkit is very straight-forward:

1. Download the newest IT Mill Toolkit from the download page at http://www.itmill.com/it-
mill_toolkit_download.htm. Select the proper download package for your operating system:
Windows, Linux, or Mac OS X.

2. Uncompress the installation package to a directory using an uncompressor program appropriate
for the package type (see below) and your operating system.

• In Windows, use ZIP uncompressor to install the package to your chosen directory.

Warning
At least with Windows XP default unzipper or when using WinRAR to uncompress
the installation package, uncompression can result in an error such as "The system
cannot find the file specified." This is because the uncompressor is unable to handle
long file paths where the total length exceeds 256 characters. This occurs, for example,
if you try to uncompress the package under Desktop. You should uncompress the
package directly under C:\ or some other short path.

• In Linux, use GNU tar and BZIP2 uncompression with tar jxf itmill-toolkit-linux-
5.x.x.tar.bz2 command.

• In Mac OS X, use tar and Gzip uncompression with tar zxf itmill-toolkit-mac-5.x.x.tar.gz
command.

The files will be, by default, uncompressed under a directory with the name
itmill-toolkit-<operatingsystem>-5.x.x.

You can rename the installation directory as you wish, especially if you wish to use the installation as a
skeleton for your own project, as described in Section 1.5.4, “Using QuickStart as a Project Skeleton” below.

When using IT Mill Toolkit in a project, you will need to copy or import the JAR packages of the library
to the web application, and possibly also to your project directory during development, depending on your
development environment. This is the case at least with Eclipse. See Section 1.4, “Getting the Development
Environment Up and Running” below for details.

24

Introduction
What's Inside the IT Mill Toolkit Pack-

age?

http://www.itmill.com/itmill_toolkit_download.htm
http://www.itmill.com/itmill_toolkit_download.htm

1.3.2. Package Contents

At the top level of the installation directory, you can find the start.bat (Windows) or start.sh
(Linux and Mac) script. Execute it from a file manager or command prompt, as instructed in Section 1.3.4,
“Running the Demo Applications”. The script launches the IT Mill Toolkit Content Browser web application
and a web browser to view its start page.

Figure 1.2. IT Mill Toolkit Package Contents

The WebContent is a web application directory that contains the material available from the Content
Browser. If you do not wish to or can not run the Content Browser, you can open the index.html with
a web browser to view the installation package contents and documentation, although the demos will not
be usable. The release-notes.html contains information about changes in the latest release and the
release history. The license subdirectory contains copying information (COPYING) and licensing
guidelines (licensing-guidelines.html).

The IT Mill Toolkit Library itself is located at WebContent/itmill-toolkit-5.x.x.jar. The
JAR package contains, in addition to the compiled files, full source code of the libraries.

The WebContent/doc directory contains full documentation for IT Mill Toolkit, including JavaDoc
API Reference Documentation and this manual in both HTML and printable PDF format.

The WebContent/WEB-INF directory contains source code for the demo applications in the src sub-
directory and required libraries in the lib subdirectory.

The gwt folder contains the full Google Web Toolkit installation package, including runtime libraries for
the selected operating system platform, full documentation, and examples. You will need GWT if you intend
to compile custom client-side widgets for IT Mill Toolkit. The root directory contains also
build-widgetsets.xml, which is an Ant file for compiling GWT widget sets as described in Sec-
tion 8.7.4, “Compiling GWT Widget Sets”.

25

Introduction
Package Contents

In addition, the installation directory contains project files to allow importing the directory as a project in
the Eclipse IDE. See Section 1.5, “QuickStart with Eclipse” for details on how to import the installation
directory as a QuickStart project in Eclipse.

1.3.3. Starting the Content Browser

The Content Browser is your best friend when using IT Mill Toolkit. It allows you to browse documentation
and example source code and run the demo applications. The demo applications demonstrate most of the
core features of IT Mill Toolkit. You can find the demo application also from the IT Mill website, at ht-
tp://toolkit.itmill.com/demo/.

To start the Content Browser, run the start script in IT Mill Toolkit installation directory as instructed below
for your specific platform. It launches a stand-alone web server running on the local host at port 8888, and
a web browser at address http://localhost:8888/.

The Content Browser will open the default web browser configured in your system. Please make sure that
the browser is compatible with IT Mill Toolkit or otherwise the demo applications may not work properly.

If the Content Browser fails to start, make sure that no other service is using port 8888.

Windows

Run the start.bat batch file by double-clicking on the icon.

JRE must be installed
You must have Java Runtime Environment (JRE) installed or the batch file will fail and close
immediately.

Starting the web server and the web browser can take a while.

Notice that executing the Content Browser locally may cause a security warning from your firewall software.
This is due to the started web service. You have to ignore warnings or temporarily accept connections to
port 8888 on your firewall software.

Linux / UNIX

Open a shell window, change to the IT Mill Toolkit installation directory, and run the start.sh shell
script. You have to run it with the following command:

$ sh start.sh

Starting IT Mill Toolkit in Desktop Mode.
Running in http://localhost:8888

2007-12-04 12:44:55.657::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
2007-12-04 12:44:55.745::INFO: jetty-6.1.5
2007-12-04 12:45:03.642::INFO: NO JSP Support for , did not find
org.apache.jasper.servlet.JspServlet
2007-12-04 12:45:03.821::INFO: Started SelectChannelConnector@0.0.0.0:8888

Starting the web server and the web browser can take a while.

Some web browsers for Linux, such as Konqueror, are not well supported, so you may have problems in
running the demo applications. Please use Mozilla Firefox or some other compatible browser.

26

Introduction
Starting the Content Browser

http://toolkit.itmill.com/demo/
http://toolkit.itmill.com/demo/
http://localhost:8888/

Mac OS X

Double-click on the Start IT Mill Toolkit icon.

Starting the web server and the web browser can take a while.

If the start icon fails in your environment for some reason, you can start the Content Browser by following
the instructions for Linux/UNIX above: open a shell window, change to the installation directory, and execute
sh start.sh.

1.3.4. Running the Demo Applications

The Content Browser allows you to run demo applications. The start page features four demos:

Feature Browser The Feature Browser allows you to view a demonstration of
the standard components available in IT Mill Toolkit. Select
the example from the tree on the left. The top-right panel will
display a list of the examples in the category and shows which
examples you have already viewed. The bottom-right panel
will display the selected example. You can click on the Open
in sub-window or Open in native window to open the ex-
ample in a child window or native window, respectively.

Notification The Notification demo demonstrates the four types of notific-
ation boxes: humanized, warning, error, and tray notifications.
Select the notification type, enter the caption and message in
the text fields, and click Show notification.

Reservation Application The Reservation Application demonstrates use of various
components in a semi-real application connected to a local
database. Most importantly, it shows how to use a Google
Maps view inside an application. Notice: starting the demo
can take several seconds.

Windowed Demos Windowed Demos are small examples that run inside child
windows, which you can open from the list on left.

Clicking on the Additional demos opens a list of other small examples, which you can view. You can
click on the sources to view the source code of each demo application.

1.4. Getting the Development Environment Up and Running

This section gives a step-by-step guide for setting up a development environment. IT Mill Toolkit supports
a wide variety of tools, so you can use any IDE for writing the code, most web browsers for viewing the
results, any operating system or processor supported by the Java 1.5 platform, and almost any Java server
for deploying the results.

In this example, we use the following toolchain:

• Windows XP [http://www.microsoft.com/windowsxp/]

• Sun Java 2 Standard Edition 6.0 Update 1 [http://java.sun.com/javase/downloads/index_jdk5.jsp]

• Eclipse IDE for Java EE Developers (Europa version) [http://www.eclipse.org/downloads/]

27

Introduction
Running the Demo Applications

http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windowsxp/
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

• Apache Tomcat 6.0 (Core) [http://tomcat.apache.org/]

• Firefox 2.0.0.1 [http://www.mozilla.com/]

• Firebug 1.01 [http://www.getfirebug.com/]

• IT Mill Toolkit 5.x.x [http://www.itmill.com/]

The above is a good choice of tools, but you can use almost any tools you are comfortable with.

Figure 1.3. Development Toolchain and Process

Figure 1.3, “Development Toolchain and Process” above illustrates the development environment and
process. You develop your application as an Eclipse project. The project must include, in addition to your
source code, the IT Mill Toolkit Library package, and the theme package. It can, optionally, include your
project-specific themes. When the project is compiled and packaged as a web application (WAR), the IT
Mill components are copied to the package. Web Tools Platform for Eclipse allows easy deployment of
web applications and debugging them under Tomcat.

1.4.1. Installing Java SDK

Java SDK is required by the Eclipse IDE during development. You may also need it for some other tasks.
IT Mill Toolkit is compatible with Java 1.5 and later editions. (Java 1.4 is no longer supported since version
5.3.0 because of the requirements of GWT 1.5.)

Windows

Setting up the Java in Windows XP is really straightforward.

28

Introduction
Installing Java SDK

http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.mozilla.com/
http://www.mozilla.com/
http://www.getfirebug.com/
http://www.getfirebug.com/
http://www.itmill.com/
http://www.itmill.com/

1. Download the installation packages from:

• Sun Java 2 Standard Edition 6.0 Update 1 from http://java.sun.com/javase/downloads/index.jsp
[http://java.sun.com/javase/downloads/index.jsp]

2. Install the Java SDK by running the installer. The default options are fine.

Linux / UNIX

Download the following package:

• Sun Java 2 Standard Edition 6.0 Update 1 from http://java.sun.com/javase/downloads/index.jsp
[http://java.sun.com/javase/downloads/index.jsp]

Decompress Java SDK under a suitable base directory, such as /opt. For example, for Java SDK, enter
(either as root or with sudo in Linux):

cd /opt
sh (path-to-installation-package)/jdk-6u1-linux-i586.bin

and follow the instructions in the installer.

1.4.2. Installing Eclipse IDE

Windows

Setting up the Eclipse IDE in Windows XP is really straightforward.

1. Download the installation package from:

• Eclipse IDE for Java EE Developers (Europa version) from http://www.eclipse.org/downloads/
[http://www.eclipse.org/downloads/]

2. Decompress the Eclipse IDE package to a suitable directory. You are free to select any directory
and to use any ZIP decompressor, but in this example we decompress the ZIP file by just double-
clicking it and selecting "Extract all files" task from Windows compressed folder task. In our
installation example, we use C:\dev as the target directory.

3. Eclipse is now installed in C:\dev\eclipse and can be started from there (by clicking ec-
lipse.exe).

Linux / UNIX

You have two basic options for installing Eclipse in Linux and UNIX: you can either install it using the
package manager of your operating system or by downloading and installing the packages manually. The
manual installation method is recommended, because the latest versions of the packages available in a
Linux package repository may be incompatible with Eclipse plugins that are not installed using the package
management. The versions mentioned above have been tested to work.

Download the following package:

• Eclipse IDE for Java EE Developers from http://www.eclipse.org/downloads/
[http://www.eclipse.org/downloads/]

Decompress the Eclipse package under a suitable base directory. It is important to make sure that there is
no old installation in a directory with the same name as installing a new version on top of an old one would
probably make Eclipse unusable.

29

Introduction
Installing Eclipse IDE

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

Eclipse should normally be installed as a regular user, as this makes installation of plugins easier. Eclipse
also stores some user settings in the installation directory. To install the package, enter:

$ tar zxf (path-to-installation-package)/eclipse-jee-europa-fall-linux-gtk.tar.gz

This will extract the package to a subdirectory with the name eclipse.

You may wish to add the Eclipse installation directory and the bin subdirectory in the installation directory
of Java SDK to your system or user PATH.

Alternatively, the package management system of your operating system may provide the packages. For
example, in Ubuntu Linux, which includes Sun Java SDK and Eclipse in its APT repository, you can install
the programs from a package manager GUI or from command-line with a command such as:

$ sudo apt-get install sun-java6-jdk eclipse

This is not, however, recommended, because the Eclipse package may not include all the necessary Java
EE tools, most importantly the Web Standard Tools, and it may cause incompatibilities with some compon-
ents that are not installed with the package management system of your operating system.

1.4.3. Installing Apache Tomcat

Apache Tomcat is a lightweight Java web server suitable for both development and production. There are
many ways to install it, but here we simply decompress the installation package.

Apache Tomcat should be installed with user permissions. During development, you will be running the
Eclipse or some other IDE with user permissions, but Eclipse can not deploy web applications to Tomcat
that is installed system-wide with administrator or root permissions.

1. Download the installation package:

Apache Tomcat 6.0 (Core Binary Distribution) from http://tomcat.apache.org/

2. Decompress Apache Tomcat package to a suitable target directory, such as C:\dev in Windows
or /opt in Linux or Mac OS X. The Apache Tomcat home directory will be
C:\dev\apache-tomcat-6.0.x or /opt/apache-tomcat-6.0.x, respectively.

3. We are now ready to start and configure Eclipse. Start it by running
C:\dev\eclipse\eclipse.exe (Windows) or /opt/eclipse/eclipse (Linux or
OS X).

4. When starting Eclipse for the first time, it asks where to save the workspace. You can select any
directory, but here we select C:\dev\workspace (Windows) or
/home/<user>/workspace (Linux or OS X). We suggest that you also set this as the default.

5. You can see some Eclipse tutorials on the "Welcome" -screen or go to workbench to continue.

6. Configure the Tomcat Server by selecting Window → Preferences. Select Web Services →
Server and Runtime from the tree on the left. Set Tomcat version to 6.x. Other defaults are
fine.

1.4.4. Firefox and Firebug

Because IT Mill Toolkit supports many web browsers, you can use any of them for development. If you
also plan to build any theme parts, like CSS files, customized layouts, or even completely new user interface
components, we recommend that you use Firefox for debugging. The toolkit specially supports Firebug
debugger and shows special support information there.

30

Introduction
Installing Apache Tomcat

To install Firefox, just go to www.mozilla.com [http://www.mozilla.com/] and download and run the in-
staller.

After installing Firefox, use it to open http://www.getfirebug.com/ [http://www.getfirebug.com/] to install
latest stable version of Firebug available for the browser. If clicking the Install Firebug 1.0 -button does
not open the install window, allow installs from the domain by clicking the yellow warning bar at the top
of the browser-window.

When Firebug is installed, it can be enabled at any time from the bottom right corner of the Firefox window.
See the example on debugging in Figure 1.4, “Firebug Debugger for Firefox” below.

Figure 1.4. Firebug Debugger for Firefox

Now that you have installed the development environment, you can proceed to making your first application.

1.5. QuickStart with Eclipse

Just want to have a quick try with IT Mill Toolkit? This section presents a QuickStart into running and
debugging IT Mill Toolkit demos under Eclipse. The QuickStart includes a web server, so you do not need
to install a full-weight web container such as Apache Tomcat.

1.5.1. Importing IT Mill Toolkit as a Project

The installation directory of IT Mill Toolkit contains all the necessary files to allow importing it as a ready-
to-run Eclipse project. Do the following steps.

1. Start Eclipse. If necessary, switch to Java Perspective from menu Window → Open Perspective
→ Java.

31

Introduction
QuickStart with Eclipse

http://www.mozilla.com/
http://www.mozilla.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

2. Select File → Import... and the dialog for importing opens.

3. In the Import dialog, select General → Existing Project Into Workspace and click Next.

4. In the Select root directory option, click on the Browse button, and select the folder where you
unpacked IT Mill Toolkit, such as itmill-toolkit-5.x.x. Click OK in the selection
window. Click Finish in the Import window to finish importing the project.

The newly imported project will look as follows.

Figure 1.5. IT Mill Toolkit Imported as a Project in Eclipse

You can browse the source code of the demo application, and run the demo in a web browser
by following the instructions given in the next section.

1.5.2. How to Run the Demo Applications in Eclipse?

Once the project is imported, as described above, you can run the Content Browser, including the demo
applications, as follows. Either:

1. From the main menu, select Run → Open Run Dialog....

2. From the list on the left, select Java Application → IT Mill Toolkit Web Mode.

3. Click Run.

Notice that after the application is launched once, it appears on the Favourites list. You can then either:

• Click on the small dropdown arrow on the right side of the Run button on Eclipse toolbar and
select IT Mill Toolkit Web Mode.

32

Introduction
How to Run the Demo Applications in

Eclipse?

• or... Select Run → Run History → IT Mill Toolkit Web Mode.

Running the application in Web Mode will open a browser window with the Content Browser. The default
system web browser is opened; make sure that the browser is compatible with IT Mill Toolkit. The Console
view in the lower pane of Eclipse will display text printed to standard output by the application. Clicking
on the red Terminate button will stop the server.

Figure 1.6. IT Mill Toolkit Content Browser Started Under Eclipse

Notice that executing the web application locally may provide a security warning from your firewall soft-
ware. This is caused by the Web Service which is started to run the Content Browser. You have to ignore
the warnings or temporarily accept connections to port 8888 on your firewall software. Also, if the web
service fails to start, make sure that no other service is using port 8888.

Launching the Hosted Mode Browser

The Hosted Mode Browser of Google Web Toolkit is a special web browser that runs the client-side GWT
Java code as Java runtime instead of JavaScript, thereby allowing you to debug the client-side components
in an IDE such as Eclipse.

Note
Hosted Mode Browser of Google Web Toolkit 1.4.62 does not work with Linux/Mozilla (Issue
#1636 in IT Mill Toolkit version 5.2.0). As a workaround, you have to use a hand-made loader
page as explained in http://dev.itmill.com/ticket/1636.

33

Introduction
How to Run the Demo Applications in

Eclipse?

To run the demo applications in the Hosted Mode Browser of Google Web Toolkit, follow the following
steps:

1. If not already started, start the demo application in Web Mode as described above. This launches
the web server, which is used also when using the hosted mode.

2. From the main menu, select Run → Open Debug Dialog....

3. From the list select Java Application → IT Mill Toolkit Hosted Mode.

4. Click Debug.

Starting demo applications under the Hosted Mode Browser can take considerable time! This is es-
pecially true for the Reservation and Color Picker applications, which require compilation of custom
widget sets. During this time, the Hosted Mode Browser is unresponsive and does not update its window.
Compiling widgets can take 5-30 seconds, depending on the hardware.

As with the Web Mode launcher, after you have run the launch once, you can select Run → Debug History
→ IT Mill Toolkit Hosted Mode, or click the dropdown marker on right of the Debug button in the
toolbar and select IT Mill Toolkit Hosted Mode.

To use the Hosted Mode Browser in your own projects, you need to create a launch configuration in Eclipse.
See Section 8.7.6, “Hosted Mode Browser” for more detailed information about the Hosted Mode Browser
and how to create the launch configuration.

How to Stop the Run

To stop the launched Jetty web container that serves the Content Browser web application, select the
Console tab and click on the Terminate button.

Figure 1.7. Terminating a Launch

To clean up all terminated launches from the Console window, click on the Remove All Terminated
Launches button.

Figure 1.8. Removing Terminated Launches

1.5.3. How to Debug the Demo Applications in Eclipse?

You can inspect and experiment with the imported project as you like. When you develop an application,
you may want to debug it. Running a web application in debug mode is easy in Eclipse. Next, we will
show you how to debug the demo applications by inserting a breakpoint in the Calc example.

1. Make sure to stop any previous Run command as instructed above at the end of Section 1.3.4,
“Running the Demo Applications”.

2. Select from menu Run → Debug... and the Debug configuration window will open.

34

Introduction
How to Debug the Demo Applications

in Eclipse?

3. Select Java Application → IT Mill Toolkit Web Mode and click Debug. The server will start
and the web browser will open.

4. Open the Calc application by selecting on the start page Additional demos → Calculator.

5. Open the source code for the Calc program. It is located in
WebContent/WEB-INF/src/com.itmill.toolkit.demo.Calc. Doubleclick the
class to open the source code in the editor.

6. Insert a breakpoint in the init() (line 57) by clicking on the gray bar on the left of the editor
window to open the context menu, and select Toggle Breakpoint.

7. Switch to the browser window and click on the Calc link to open it.

8. Eclipse encouters the breakpoint and asks to switch to the Debug perspective. Click Yes. The
debug window will show the current line where the execution stopped as follows:

Figure 1.9. Execution Stopped at Breakpoint in Debug Perspective in Eclipse

1.5.4. Using QuickStart as a Project Skeleton

If you like, you can also use the imported Toolkit as a skeleton for your project. Just remove any unnecessary
files or files related to the demo applications from the project. You may also want to rename the IT Mill
Toolkit installation directory with a name more proper for your project.

If you want to go the long way, which is probably preferred for a real project, especially a large one, you
should follow the instructions in Section 1.6, “Your First Project with IT Mill Toolkit”.

1.6.Your First Project with IT Mill Toolkit

This section gives detailed instructions into creating a new project that uses IT Mill Toolkit. The task will
include the following steps:

1. Create a new project in the Eclipse IDE.

2. Import IT Mill Toolkit library JAR into the project.

3. Write the source code.

4. Write the web.xml Deployment Descriptor for the web application.

35

Introduction
Using QuickStart as a Project Skeleton

5. Configure and start Tomcat (or some other web server).

6. Open a web browser to use the web application.

We also show you how to debug the application in the debug mode in Eclipse.

1.6.1. Creating the Project

Let us create the first application project with the tools installed in the previous section. First launch Eclipse
and follow the following steps:

1. Start creating a new project by selecting from the menu File → New → Project....

2. From the New Project window that opens, select Web → Dynamic Web Project and click Next.

3. Enter the Project name, such as "myproject", and leave Use default location selected to
create the new project under the default workspace location. Check that the Target runtime,
that is the web container, is correct. For example, if you installed Apache Tomcat, check that it
reads here. Click Next twice.

36

Introduction
Creating the Project

4. The wizard will suggest myproject for a context name. This will be the subpath in the URL,
for example http://localhost:8080/myproject. The default for the application root
will be / (root).

You can just accept the defaults and click Finish. The wizard closes and creates the project.

5. Eclipse asks to switch to J2EE perspective. A Dynamic Web Project uses an external web server
and the J2EE perspective provides tools to control the server and manage application deployment.
Click Yes.

Figure 1.10. A New Dynamic Web Service Project

Feel free to explore the contents of the newborn project. Your source code will usually go under the src
folder. IT Mill Toolkit libraries and any resource files will be placed under the WebContent folder, which
contains all material that is to be published to the web server.

37

Introduction
Creating the Project

1.6.2. Including IT Mill Toolkit Libraries

You need to include the IT Mill Toolkit library package in the project. Copy the following JAR package
from the directory where you unpacked IT Mill Toolkit distribution to WebContent/WEB-INF/lib
folder:

• WebContent/itmill-toolkit-5.x.x.jar

Perhaps the easiest way to include the library is to import it.

1. Select the WebContent/WEB-INF/lib folder in the Project Explorer, right-click on the
folder and select Import....

2. Select General → File System and click Next.

3. Click Browse to select the WebContent directory under the IT Mill Toolkit installation directory
and click Ok.

4. The Import window will show the libraries contained in the directory.

Check the itmill-toolkit-5.x.x.jar item as shown above. Click Finish to import the
selected library.

Notice that Eclipse does not show the imported library under WebContent/WEB-INF folder where you
imported it, but under Java Resources → Libraries → Web App Libraries.

38

Introduction
Including IT Mill Toolkit Libraries

You can observe that the library has appeared in the project classpath by selecting Project → Properties
and in the Properties window selecting Java Build Path → Libraries → Web App Libraries.

1.6.3. Writing the Code

Next, we will look into how to create the application class.

1. Right-click on the Java Resources: src folder and select New → Class.

39

Introduction
Writing the Code

2. Enter the class name in the Name field, for example MyApplication.

3. Enter a package name in the Package field or leave it empty to create the class in the default
package.

4. You can enter the superclass com.itmill.toolkit.Application to create stubs for inherited abstract
methods automatically, or leave it empty to define the inheritance manually in editor.

5. Click Finish to create the class and its source file.

The skeleton of the file will be opened in the editor and will look as follows.

import com.itmill.toolkit.Application;

public class MyApplication extends Application {

 @Override
 public void init() {
 // TODO Auto-generated method stub
 }
}

You can now write the source code. The Hello World application above provides a simple example for
creating a minimal application.

We will use the Calculator demo application in the rest of this section as an example. You can import the
source file into the project by right-clicking the project folder and selecting Import → Import.... From
the Import dialog, select General → File System, click Next. Click Browse to select the demo directory
from the installation package, browse to WebContent/src/itmill/toolkit/demo, and click Ok.
Check Calc.java in the list on the right. In the Into folder field, enter
myproject/src/com/itmill/toolkit/demo to import the source file under the com.it-
mill.toolkit.demo package. Finally, click Finish.

40

Introduction
Writing the Code

1.6.4. Defining Deployment Descriptor

You need to set up the application environment as described in Section 3.7, “Application Environment”
and provide a deployment descriptor WebContent/WEB-INF/web.xml for the application.

The new web project in Eclipse contains a template for the deployment descriptor. By default, Eclipse
opens the file with XML editor. To use text editor, right-click on the web.xml file and select Open With
→ Text Editor. The template contains a <welcome-file-list> block, which you can remove if you
like.

The contents of the descriptor for the Calc application are given in the example below.

Example 1.3. Web.xml Deployment Descriptor for a Project

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.itmill.toolkit.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>com.itmill.toolkit.demo.Calc</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The descriptor defines a servlet with the name myservlet. The servlet class, com.itmill.toolkit.termin-
al.gwt.server.ApplicationServlet, is provided by IT Mill Toolkit framework and it should be the same
for all IT Mill Toolkit projects. The servlet takes the class name Calc of the user application class as a
parameter, including the full package path to the class. If the class is in the default package the package
path is obviously not used.

For a more detailed treatment of the web.xml file, see Section 3.7.3, “Deployment Descriptor web.xml”.

41

Introduction
Defining Deployment Descriptor

1.6.5. Ready to Go!

Now everything should be in place and your Eclipse should look like this:

Figure 1.11. A Ready Project

In a production-ready project, you should also have widget sets and themes in the WebContent/ITMILL
directory. The default widget sets and themes are included in the JAR library, but accessing them from a
JAR is inefficient. We recommend installing the ITMILL directory so that it can be accessed directly from
the web server. You can copy the directory from under the IT Mill Toolkit installation directory to the
WebContent directory in your project, or extract it from the JAR package.

1.6.6. Starting the Web Server

Eclipse IDE for Java EE Developers has the Web Standard Tools package installed, which supports control
of various web servers and automatic deployment of web content to the server when changes are made to
a project.

Make sure that Tomcat was installed with user permissions. Configuration of the web server in Eclipse
will fail if the user does not have write permissions to the configuration and deployment directories under
the Tomcat installation directory.

Follow the following steps.

1. Switch to the Servers tab in the lower panel in Eclipse. List of servers should be empty after
Eclipse is installed. Right-click on the empty area in the panel and select New → Server.

2. Select Apache → Tomcat v6.0 Server and set Server's host name as localhost, which
should be the default. If you have only one Tomcat installed, Server runtime has only one
choise. Click Next.

42

Introduction
Ready to Go!

3. Add your project to the server by selecting it on the left and clicking Add to add it to the con-
figured projects on the right. Click Finish.

4. The server and the project are now installed in Eclipse and are shown in the Servers tab. To start
the server, right-click on the server and select Debug. To start the server in non-debug mode,
select Start.

5. The server starts and the WebContent directory of the project is published to the server.

1.6.7. Running and Debugging

If you have everything set up as described above, all the rest is easy. Just head your web browser to
http://localhost:8080/myproject/.

43

Introduction
Running and Debugging

Figure 1.12. Running an IT Mill Toolkit Application

To examine how the application works, you can insert break points in the Java code by double-clicking
on the left margin bar of the source code window. A small magnifying glass will indicate the breakpoint.
If you insert a breakpoint in the buttonClick() event handling method and click any button in the
calculator, eclipse will ask to switch to the Debug perspective. Answer Yes and the Debug perspective
will open where the execution stopped at the breakpoint. You can examine the state of the application and
even make some changes and then select Resume from Run menu to continue the execution.

44

Introduction
Running and Debugging

Figure 1.13. Debugging an IT Mill Toolkit Application

The procedure described above allows debugging the server-side application. If you develop client-side
widgets with Google Web Toolkit (GWT), the GWT Hosted Mode Browser allows you to debug the widgets.
For more information on debugging client-side widgets, see Section 8.7.6, “Hosted Mode Browser”.

45

Introduction
Running and Debugging

46

Chapter 2. Architecture
This chapter provides a description of the architecture of IT Mill Toolkit.

2.1. Overview

In Chapter 1, Introduction, we gave a short introduction to the general architecture of IT Mill Toolkit. Let
us now look deeper into it. Figure 2.1, “IT Mill Toolkit Architecture” below illustrates the architecture.

Figure 2.1. IT Mill Toolkit Architecture

IT Mill Toolkit consists of a web application API, a horde of user interface components, themes for con-
trolling the appearance, and a data model that allows binding the user interface components directly to
data. Behind the curtains it also employs a terminal adapter to receive requests from web browsers and
make responses by rendering the pages.

An application using IT Mill Toolkit runs as a servlet in a Java web server, serving HTTP requests. The
terminal adapter receives client requests through the web server's Java Servlet API, and inteprets them to

47

user events for a particular session. An event is associated with a UI component and delivered to the ap-
plication. As the application logic makes changes to the UI components, the terminal adapter renders them
in the web browser by generating a response. In AJAX rendering mode, a client-side JavaScript component
receives the responses and uses them to make any necessary changes to the page in the browser.

The top level of a user application consists of an application class that inherits com.itmill.toolkit.Applic-
ation. It creates the UI components (see below) it needs, receives events regarding them, and makes neces-
sary changes to the components. For detailed information about inheriting the Application, see Chapter 3,
Writing a Web Application.

The major parts of the architecture and their function are as follows:

User Interface Components The user interface consists of UI components that are created
and laid out by the application. The components render
themselves using a terminal adapter, which in return creates
user events (see below) for the components. The components
relay these events to the application logic. Most components
are bound to some data using the Data Model (see below).
For a complete description of UI component architecture,
see Chapter 4, User Interface Components.

Client-Side Engine The Client-Side Engine of IT Mill Toolkit manages the ren-
dering in the web browser using Google Web Toolkit (GWT).
It communicates user interaction and UI changes with the
server-side Terminal Adapter using the User Interface
Definition Language (UIDL), a JSON-based language. The
communications are done using asynchronous HTTP or
HTTPS requests. See Section 2.3, “Client-Side Engine”.

Terminal Adapter The UI components do not render themselves directly as a
web page, but use a Terminal Adapter. This abstraction layer
allows users to use IT Mill Toolkit applications with practic-
ally any web browser. Releases 3 and 4 of IT Mill Toolkit
supported HTML and simple AJAX based rendering, while
Release 5 supports advanced AJAX-based rendering using
Google Web Toolkit (GWT). You could imagine some other
browser technology, not even based on HTML, and you - or
we for that matter - could make it work just by writing a new
adapter. Your application would still just see the Toolkit API.
To allow for this sort of abstraction, UI components commu-
nicate their changes to the Terminal Adapter, which renders
them for the user's browser. When the user does something
in the web page, the events are communicated to the terminal
adapter (through the web server) as asynchronous AJAX re-
quests. The terminal adapter delivers the user events to the
UI components, which deliver them to the application's UI
logic.

Themes The user interface separates between presentation and logic.
While the UI logic is handled as Java code, the presentation
is defined in themes as CSS. IT Mill Toolkit provides a de-
fault themes. User themes can, in addition to style sheets,
include HTML templates that define custom layouts and
other resources, such as images. Themes are discussed in
detail in Chapter 6, Themes.

48

Architecture
Overview

UIDL The Terminal Adapter draws the user interface to the web
page and any changes to it using a special User Interface
Definition Language (UIDL). The UIDL communications
are done using JSON (JavaScript Object Notation), which is
a lightweight data interchange format that is especially effi-
cient for interfacing with JavaScript-based AJAX code in
the browser. See Section 2.2.3, “JSON” and Chapter 10, User
Interface Definition Language (UIDL) for details.

Events User interaction with UI components creates events, which
are first processed on the client side with JavaScript and then
passed all the way through the HTTP server, terminal adapter,
and user component layers to the application. See Section 2.4,
“Events and Listeners”.

Data Model In addition to the user interface model, IT Mill Toolkit
provides a data model for interfacing data presented in UI
components. Using the data model, the user interface com-
ponents can update the application data directly, without the
need for any control code. All the UI components use this
data model internally, but they can be bound to a separate
data source as well. For example, you can bind a table com-
ponent to an SQL query response. For a complete overview
of the IT Mill Toolkit Data Model, please refer to Chapter 7,
Data Model.

2.2.Technological Background

This section provides an introduction to the various technologies and designs on which IT Mill Toolkit is
based: AJAX-based web applications in general, Google Web Toolkit, and JSON data interchange format.
This knowledge is not necessary for using IT Mill Toolkit, but provides some background if you need to
make low-level extensions to IT Mill Toolkit.

2.2.1. AJAX

AJAX (Asynchronous JavaScript and XML) is a technique for developing web applications with responsive
user interaction, similar to traditional desktop applications. Communications between the browser and the
server can be done without needing to reload the page, but only small parts of the data can be loaded, as
necessary. This goal is archieved by the use of a certain set of technologies: XHTML, CSS, DOM,
JavaScript, XMLHttpRequest, and XML.

AJAX requests can be made by using the XMLHttpRequestAPI in JavaScript. The API is available in
all major browsers and, as of 2006, the API is under way to become a W3C standard.

Communications between the browser and the server usually require some sort of serialization (or mar-
shalling) of data objects. AJAX suggests the use of XML for data representation in communications between
the browser and the server. While IT Mill Toolkit Release 4 used XML for data interchange, Release 5
uses the more efficient JSON. For more important about JSON and its use in IT Mill Toolkit, see Sec-
tion 2.2.3, “JSON” below.

Section 9.2, “Special Characteristics of AJAX Applications” discusses the history and motivations for
AJAX-based web applications, as well as some special characteristics that differ from both traditional web
applications and desktop applications.

49

Architecture
Technological Background

2.2.2. Google Web Toolkit

Google Web Toolkit is a software development kit for developing client-side web applications easily,
without having to use JavaScript or other browser technologies directly. Applications using GWT are de-
veloped with Java and compiled into JavaScript with the GWT Compiler.

GWT is essentially a client-side technology, normally used to develop user interface logic in the web
browser. GWT applications still need to communicate with a server using RPC calls and by serializing
any data. IT Mill Toolkit effectively hides all client-server communications, allows handling user interaction
logic in a server application, and allows software development in a single server-side application. This
makes the architecture of an AJAX-based web application much simpler.

IT Mill Toolkit uses GWT to render user interfaces in the web browser and handle the low-level tasks of
user interaction in the browser. Use of GWT is largely invisible in IT Mill Toolkit for applications that do
not need any custom GWT components.

See Section 2.3, “Client-Side Engine” for a description of how GWT is used in the Client-Side Engine of
IT Mill Toolkit. Chapter 8, Developing Custom Components provides information about the integration
of GWT-based user interface components with IT Mill Toolkit.

2.2.3. JSON

JSON is a lightweight data-interchange format that is easy and fast to generate and parse. JSON messages
are said to be possibly a hundred times faster to parse than XML with current browser technology. The
format is a subset of the JavaScript language, which makes it possible to evaluate JSON messages directly
as JavaScript expressions. This makes JSON very easy to use in JavaScript applications and therefore also
for AJAX applications.

The Client-Side Engine of IT Mill Toolkit uses JSON through Google Web Toolkit, which supports JSON
communications in the com.google.gwt.json.client package. Together with advanced update optimization
and caching, IT Mill Toolkit is able to update changes in the user interface to the browser in an extremely
efficient way.

The use of JSON is completely invisible to a developer using IT Mill Toolkit. Implementation of client-
server serialization in custom widgets uses abstract interfaces that may be implemented as any low-level
interchange format, such as XML or JSON. Details on JSON communications are given in Section 10.2,
“JSON Rendering”.

2.3. Client-Side Engine

This section gives an overview of the client-side architecture of IT Mill Toolkit. Knowledge of the client-
side technologies is generally not needed unless you develop or use custom GWT components. The client-
side engine is based on Google Web Toolkit (GWT), which allows the development of the engine and
client-side components solely with Java.

Chapter 8, Developing Custom Components provides information about the integration of GWT-based
user interface components with IT Mill Toolkit.

50

Architecture
Google Web Toolkit

Figure 2.2. Architecture of IT Mill Toolkit Client-Side Engine

Figure 2.2, “Architecture of IT Mill Toolkit Client-Side Engine” illustrates the architecture of the client-
side engine using a button component as an example. The user interface is managed by the Application-
Connection class, which handles AJAX requests to the server and renders the user interface according to
responses. Communications are done over HTTP(S) using the JSON data interchange format and the User
Interface Definition Language (UIDL). In the server-side application, the button is used with the Button
class of IT Mill Toolkit. On the client-side, the user interface consists of various GWT components that
inherit Widget class. In the figure above, the GWT class Button is used to render the button in the browser
(the inheritance of Button is simplified in the figure). IT Mill Toolkit provides an IButton class, which
implements the Paintable interface needed for rendering the component with GWT.

The actual initial web page that is loaded in the browser is an empty page that loads the JavaScript code
of the IT Mill Toolkit Client-Side Engine. After it is loaded and started, it handles the AJAX requests to
the server. All server communications are done through the ApplicationConnection class.

The communication with the server is done as UIDL (User Interface Definition Language) messages using
the JSON message interchange format over a HTTP(S) connection. UIDL is described in Chapter 10, User
Interface Definition Language (UIDL) and JSON in Section 2.2.3, “JSON” and Section 10.2, “JSON
Rendering”.

2.4. Events and Listeners

When a user does something, such as clicks a button or selects an item, the application needs to know
about it. Many Java-based user interface frameworks follow the Observer design pattern to communicate
user input to the application logic. So does IT Mill Toolkit. The design pattern involves two kinds of ele-
ments: an object and a number of observers that listen for events regarding the object. When an event related
to the object occurs, the observers receive a notification regarding the event. In most cases there is only
one observer, defined in the application logic, but the pattern allows for multiple observers. As in the event-
listener framework of Java SE, we call the observing objects listeners.

In the ancient times of C programming, callback functions filled largely the same need as listeners do now.
In object-oriented languages, we have only classes and methods, not functions, so the application has to
give a class interface instead of a callback function pointer to the framework. However, IT Mill Toolkit
supports defining a method as a listener as well.

51

Architecture
Events and Listeners

Events can serve many kinds of purposes. In IT Mill Toolkit, the usual purpose of events is handling user
interaction in a user interface. Session management can require special events, such as time-out, in which
case the event is actually the lack of user interaction. Time-out is a special case of timed or scheduled
events, where an event occurs at a specific date and time or when a set time has passed. Database and
other asynchronous communications can cause events too.

To receive events of a particular type, an application must include a class that implements the corresponding
listener interface. In small applications, the application class itself could implement the needed listener
interfaces. Listeners are managed by the AbstractComponent class, the base class of all user interface
components. This means that events regarding any component can listened to. The listeners are registered
in the components with addListener() method.

Most components that have related events define their own event class and corresponding listener classes.
For example, the Button has Button.ClickEvent events, which can be listened to through the Button.Click-
Listener interface. This allows an application to listen to many different kinds of events and to distinguish
between them at class level. This is usually not enough, as applications usually have many components of
the same class and need to distinguish between the particular components too. We will look into that more
closely below. The purpose of this sort of class level separation is to avoid having to make type conversions
in the handlers.

Notice that many listener interfaces inherit the java.util.EventListener superinterface, but it is not generally
necessary to inherit it.

Figure 2.3. Class Diagram of a Button Click Listener

Figure 2.3, “Class Diagram of a Button Click Listener” illustrates an example where an application-specific
class inherits the Button.ClickListener interface to be able to listen for button click events. The application
must instantiate the listener class and register it with addListener(). When an event occurs, an event
object is instantiated, in this case a ClickEvent. The event object knows the related UI component, in this
case the Button.

The following example follows a typical pattern where you have a Button component and a listener that
handles user interaction (clicks) communicated to the application as events. Here we define a class that
listens click events.

52

Architecture
Events and Listeners

public class TheButton implements Button.ClickListener {
 Button thebutton;

 /** Creates button into given container. */
 public TheButton(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);
 }

 /** Handle button click events from the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
}

As an application often receives events for several components of the same class, such as multiple buttons,
it has to be able to distinguish between the individual components. There are several techniques to do this,
but probably the easiest is to use the property of the received event, which is set to the object sending the
event. This requires keeping at hand a reference to every object that emits events.

public class TheButtons implements Button.ClickListener {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(this);
 container.addComponent (secondbutton);
 }

 /** Handle button click events from the two buttons. */
 public void buttonClick (Button.ClickEvent event) {
 if (event.getButton() == thebutton)
 thebutton.setCaption ("Do not push this button again");
 else if (event.getButton() == secondbutton)
 secondbutton.setCaption ("I am not a number");
 }
}

Another solution to handling multiple events of the same class involves attaching an event source to a
listener method instead of the class. An event can be attached to a method using another version of the
addListener() method, which takes the event handler method as a parameter either as a name of the
method name as a string or as a Method object. In the example below, we use the name of the method as
a string.

public class TheButtons2 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons2(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(Button.ClickEvent.class, this, "theButtonClick");
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(Button.ClickEvent.class, this, "secondButtonClick");
 container.addComponent (secondbutton);
 }

53

Architecture
Events and Listeners

 public void theButtonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }

 public void secondButtonClick (Button.ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
}

Adding a listener method with addListener() is really just a wrapper that creates a com.it-
mill.toolkit.event.ListenerMethod listener object, which is an adapter from a listener class to a method.
It implements the java.util.EventListener interface and can therefore work for any event source using the
interface. Notice that not all listener classes necessarily inherit the EventListener interface.

The third way, which uses anonymous local class definitions, is often the easiest as it does not require
cumbering the managing class with new interfaces or methods. The following example defines an anonymous
class that inherits the Button.ClickListener interface and implements the buttonClick() method.

public class TheButtons3 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons3(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(new Button.ClickListener() {
 /* Define the method in the anonymous class to handle the click. */
 public void buttonClick(ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
 });
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(new Button.ClickListener() {
 /* Define the method in the anonymous class to handle the click. */
 public void buttonClick(ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
 });
 container.addComponent (secondbutton);
 }
}

Other techniques for separating between different sources also exist. They include using object properties,
names, or captions to separate between them. Using captions or any other visible text is generally discour-
aged, as it may create problems for internationalization. Using other symbolic strings can also be dangerous,
because the syntax of such strings is checked only runtime.

Events are usually emitted by the framework, but applications may need to emit them too in some situations,
such as when updating some part of the UI is required. Events can be emitted using the
fireEvent(Component.Event) method of AbstractComponent. The event is then relayed to all
the listeners of the particular event class for the object. Some components have a default event type, for
example, a Button has a nested Button.ClickEvent class and a corresponding Button.ClickListener in-
terface. These events can be triggered with fireComponentEvent().

54

Architecture
Events and Listeners

Chapter 3. Writing a Web Application
This chapter gives the fundamentals of web application development with IT Mill Toolkit. The overview
gives an introduction to the Application class that every user application must inherit. Every application
has a main window. The main window and other windows are also managed by the application object, so
we give a detailed description of the various window classes, together with some common design patterns.
Also various resources, such as images and downloadable documents, are managed by the Application,
so we look into the basic resource interfaces and classes. Finally, we look into the deployment of applications
as Java Servlets in a web container.

Related topics in other chapters include the use of events and listeners, the basis of all user interaction in
applications, which are are detailed in Section 2.4, “Events and Listeners”.

To gain more insight about application design with IT Mill Toolkit, you may want to read Chapter 9, Ad-
vanced Web Application Topics. For a newcomer into AJAX development, it explains the role of pages in
AJAX web applications, and provides some basic design patterns for applications.

3.1. Overview

An application that uses IT Mill Toolkit must define an application class that inherits the abstract com.it-
mill.toolkit.Application class. The application class must implement the init() method.

public class MyApplication extends com.itmill.toolkit.Application {

 public void init() {
 ... initialization code goes here ...
 }
}

The web application API may seem similar to Java Servlet API, but that is only superficial. IT Mill Toolkit
framework associates requests with sessions so that an application class instance is really a session object.
Because of this, you can develop web applications much like you would develop desktop applications.

How does it work? IT Mill Toolkit framework does basically everything it does on top of the Java Servlet
API, which lies hidden deep under the hood, with the terminal adapter being the lowest level layer for
handling requests from the web container. When the web container gets the first request for a URL registered
for an application, it creates an instance of the ApplicationServlet class in IT Mill Toolkit framework that
inherits the HttpApplet class defined in Java Servlet API. It follows sessions by using HttpSession interface
and associates an Application instance with each session. During the lifetime of a session, the framework
relays user actions to the proper application instance, and further to a user interface component.

Application class also provides facilities for window access, execution control, and theme selection.

As the application instance is really a session, it can end. If the user quits the application through the user
interface, an event handler should call the close() method in Application. However, as the user interface
runs under a web browser, a user can simply close the browser window and the application has no way of
knowing it happened. When the user starts the browser again and opens the application URL, the application
window will be rendered where the user left off. This can be desired behaviour in many cases, but often
it is not and it creates security problems. A common solution is to use a timeout to terminate a session
automatically.

The user application class needs to be registered in the web application. This is done in the web application
package, see Section 3.7, “Application Environment”.

55

3.2. Managing the Main Window

As explained in Section 9.2, “Special Characteristics of AJAX Applications”, an AJAX web application
usually runs in a single "web page" in a browser window. The page is generally not reloaded after it is
opened initially, but it communicates user interaction with the server through AJAX communications. A
window in an AJAX application is therefore more like a window in a desktop application and less like a
page.

A Window is the top-level container of a user interface displayed in a browser window. As an AJAX ap-
plication typically runs on a single "page" (URL), there is usually just one window -- the main window.
The main window can be accessed using the URL of the application. You set the main window with the
setMainWindow() method of the Application class.

import com.itmill.toolkit.ui.*;

public class HelloWorld extends com.itmill.toolkit.Application {
 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

... fill the main window with components ...
 }
}

IT Mill Toolkit has two basic kinds of windows: application-level windows such as the main window and
child windows inside the application-level windows. These two types of windows are covered in the sub-
sequent sections.

3.3. Child Windows

An application-level window can have a number of floating child windows. They are managed by the client-
side JavaScript runtime of IT Mill Toolkit using HTML features. IT Mill Toolkit allows opening and
closing child windows, refreshing one window from another, resizing windows, and scrolling the window
content. Child windows are typically used for Dialog Windows and Multiple Document Interface applications.
Child windows are by default not modal; you can set them modal as described in Section 3.3.3, “Modal
Windows”.

As with all user interface components, the appearance of a window and its contents is defined with themes.

User control of a child window is limited to moving, resizing, and closing the window. Maximizing or
minimizing are not yet supported.

3.3.1. Opening and Closing a Child Window

You can open a new window by creating a new Window object and adding it to the main window with
addWindow() method of the Application class.

mywindow = new Window("My Window");
mainwindow.addWindow(mywindow);

You close the window in a similar fashion, by calling the removeWindow() of the Application class:

myapplication.removeWindow (mywindow);

The user can, by default, close a child window by clicking the close button in the upper-right corner of the
window. You can disable the button by setting the window as read-only with setReadOnly(true).
Notice that you could disable the button also by making it invisible in CSS with a "display: none"

56

Writing a Web Application
Managing the Main Window

formatting. The problem with such a cosmetic disabling is that a malicious user might re-enable the button
and close the window, which might cause problems and possibly be a security hole. Setting the window
as read-only not only disables the close button on the client side, but also prevents processing the close
event on the server side.

The following example demonstrates the use of a child window in an application. The example manages
the window using a custom component that contains a button for opening and closing the window.

/** Component contains a button that allows opening a window. */
public class WindowOpener extends CustomComponent
 implements Window.CloseListener {
 Window mainwindow; // Reference to main window
 Window mywindow; // The window to be opened
 Button openbutton; // Button for opening the window
 Button closebutton; // A button in the window
 Label explanation; // A descriptive text

 public WindowOpener(String label, Window main) {
 mainwindow = main;

 /* The component consists of a button that opens the window. */
 final VerticalLayout layout = new VerticalLayout();

 openbutton = new Button("Open Window", this, "openButtonClick");
 explanation = new Label("Explanation");
 layout.addComponent(openbutton);
 layout.addComponent(explanation);

 setCompositionRoot(layout);
 }

 /** Handle the clicks for the two buttons. */
 public void openButtonClick(Button.ClickEvent event) {
 /* Create a new window. */
 mywindow = new Window("My Dialog");
 mywindow.setPositionX(200);
 mywindow.setPositionY(100);

 /* Add the window inside the main window. */
 mainwindow.addWindow(mywindow);

 /* Listen for close events for the window. */
 mywindow.addListener(this);

 /* Add components in the window. */
 mywindow.addComponent(new Label("A text label in the window."));
 closebutton = new Button("Close", this, "closeButtonClick");
 mywindow.addComponent(closebutton);

 /* Allow opening only one window at a time. */
 openbutton.setEnabled(false);

 explanation.setValue("Window opened");
 }

 /** Handle Close button click and close the window. */
 public void closeButtonClick(Button.ClickEvent event) {
 /* Windows are managed by the application object. */
 mainwindow.removeWindow(mywindow);

 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with button");
 }

57

Writing a Web Application
Opening and Closing a Child Window

 /** In case the window is closed otherwise. */
 public void windowClose(CloseEvent e) {
 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with window controls");
 }
}

You can use the above custom component in the application class with:

 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

 addComponent(new WindowOpener("Window Opener", main));
 }

The example implements a custom component that inherits the CustomComponent class. It consists of a
Button that it uses to open a window and a Label to describe the state of the window. When the window
is open, the button is disabled. When the window is closed, the button is enabled again.

When added to an application, the screen will look as illustrated in the following screenshot:

Figure 3.1. Opening a Child Window

3.3.2. Window Positioning

When created, a window will have a default size and position. You can specify the size of a window with
setHeight() and setWidth() methods. You can set the position of the window with
setPositionX() and setPositionY() methods.

/* Create a new window. */
mywindow = new Window("My Dialog");

/* Set window size. */
mywindow.setHeight("200px");
mywindow.setWidth("400px");

58

Writing a Web Application
Window Positioning

/* Set window position. */
mywindow.setPositionX(200);
mywindow.setPositionY(50);

Notice that the size of the main window is unknown and the getHeight and getWidth methods will
return -1.

3.3.3. Modal Windows

A modal window is a child window that has to be closed by the user before the use of the parent window
can continue. Dialog windows are typically modal. The advantage of modal windows is the simplification
of user interaction, which may contribute to the clarity of the user interface. Modal windows are also easy
to use from a development perspective, because as user interaction is isolated to them, changes in application
state are more limited while the modal window is open. The disadvantage of modal windows is that they
can restrict workflow too much.

Figure 3.2. Screenshot of the Modal Window Demo Application

Depending on theme settings, the parent window may be grayed while the modal window is open.

The demo application of IT Mill Toolkit includes an example of using modal windows. Figure 3.2,
“Screenshot of the Modal Window Demo Application” above is from the demo application. The example
includes the source code.

Security Warning

Modality of child windows is purely a client-side feature and can be circumvented with client-
side attack code. You should not trust in the modality of child windows in security-critical situations
such as login windows.

59

Writing a Web Application
Modal Windows

3.4. Application-Level Windows

IT Mill Toolkit Release 5 introduces support for multiple application-level windows that can be used just
like the main window. All such windows use the same application session. Each window is identified with
a URL that is used to access it. This makes it possible to bookmark application-level windows. Such windows
can even be created dynamically based on URLs.

Application-level windows allow several uses important for the usability of browser-based applications.

• Native child windows. An application can open child windows that are not floating windows inside
a parent window.

• Page-based browsing. The application can allow the user to open certain content to different
windows. For example, in a messaging application, it can be useful to open different messages
to different windows so that the user can browse through them while writing a new message.

• Bookmarking. Bookmarks in the web browser can provide an entry-point to some content provided
by an application.

• Embedding windows. Windows can be embedded in web pages, thus making it possible to provide
different views to an application from different pages or even from the same page, while keeping
the same session. See Section 3.8, “Embedding Applications in Web Pages”.

Because of the special nature of AJAX applications, these uses require some caveats. We will go through
them later in Section 3.4.4, “Caveats in Using Multiple Windows”.

3.4.1. Creating New Application-Level Windows

Creating a new application-level window is much like creating a child window, except that the window is
added with addWindow() to the application object instead of the main window.

public class WindowTestApplication extends Application {
 public void init() {
 final Window main = new Window ("Window Test Application");
 setMainWindow(main);

 /* Create a new window. */
 final Window mywindow = new Window("Second Window");

 /* Manually set the name of the window. */
 mywindow.setName("mywindow");

 /* Add some content to the window. */
 mywindow.addComponent(new Label("This is a second window."));

 /* Add the window to the application. */
 addWindow(mywindow);
 }
}

This creates the window object that a user can view by opening the URL in a browser. Creating an applic-
ation-level window object does not open a new browser window automatically to view the object, but if
you wish to open one, you have to do it explicitly as shown below. An application-level window has a
unique URL, which is based on the application URL and the name of the window given with the
setName() method. For example, if the application URL is http://localhost:8080/myapp/
and the window name is mywindow, the URL for the window will be
http://localhost:8080/myapp/mywindow/. If the name of a window is not explicitly set with

60

Writing a Web Application
Application-Level Windows

setName(), an automatically generated name will be used. The name can be retrieved with the
getName() method and the entire URL with getURL().

There are three typical ways to open a new window: using the open() method of Window class, a Link,
or referencing it from HTML or JavaScript code written inside a Label component.

The Window open() method takes as parameters a resource to open and the target name. You can use
ExternalResource to open a specific URL, which you get from the window to be opened with the
getURL() method.

/* Create a button to open a new window. */
main.addComponent(new Button("Click to open new window",
 new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Open the window.
 main.open(new ExternalResource(mywindow.getURL()), "_new");
 }
}));

The target name is one of the default HTML target names (_new, _blank, _top, etc.) or a custom target
name. How the window is exactly opened depends on the browser. Browsers that support tabbed browsing
can open the window in another tab, depending on the browser settings.

Another typical way to open windows is to use a Link component with the window URL as an Extern-
alResource.

/* Add a link to the second window. */
Link link = new Link("Click to open second window",
 new ExternalResource(mywindow.getURL()));
link.setTargetName("second");
link.setTargetHeight(300);
link.setTargetWidth(300);
link.setTargetBorder(Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

Using a Link allows you to specify parameters for the window that opens by clicking on the link. Above,
we set the dimensions of the window and specify what window controls the window should contain. The
Link.TARGET_BORDER_DEFAULT specifies to use the default, which includes most of the usual window
controls, such as the menu, the toolbar, and the status bar.

Another way to allow the user to open a window is to insert the URL in HTML code inside a Label. This
allows even more flexibility in specifying how the window should be opened.

/* Add the link manually inside a Label. */
main.addComponent(new Label("Second window: <a href='"
 +mywindow.getURL()+"' target='second'>click to open",
 Label.CONTENT_XHTML));
main.addComponent(new Label("The second window can be accessed through URL: "
 +mywindow.getURL()));

When an application-level window is closed in the browser the close() method is called just like for a
child window and the Window object is purged from the application.

3.4.2. Creating Windows Dynamically

You can create a window object dynamically by its URL path by overriding the getWindow() method
of the Application class. The method gets a window name as its parameter and must return the corresponding
Window object. The window name is determined from the first URL path element after the application
URL (window name may not contain slashes). See the notes below for setting the actual name of the dy-
namically created windows below.

61

Writing a Web Application
Creating Windows Dynamically

The following example allows opening windows with a window name that begins with "planet-" prefix.
Since the method is called for every browser request for the application, we filter only the requests where
a window with the given name does not yet exist.

public class WindowTestApplication extends Application {
 ...

 @Override
 public Window getWindow(String name) {
 // If a dynamically created window is requested, but it does
 // not exist yet, create it.
 if (name.startsWith("planet-") &&
 super.getWindow(name) == null) {
 String planetName = name.substring("planet-".length());

 // Create the window object.
 Window newWindow = new Window("Window about " + planetName);

 // DANGEROUS: Set the name explicitly. Otherwise, an
 // automatically generated name is used, which is usually safer.
 newWindow.setName(name);

 // Put some content in it.
 newWindow.addComponent(new Label("This window contains details about " +
 planetName + "."));

 // Add it to the application as a regular application-level window.
 addWindow(newWindow);

 return newWindow;
 }

 // Otherwise the Application object manages existing windows by their name.
 return super.getWindow(name);
 }

The window name is and must be a unique indentifier for each Window object instance. If you use
setName() to set the window name explicitly, as we did above, any browser window that has the same
URL (within the same browser) would open the same window object. This is dangerous and generally not
recommended, because the browser windows would share the same window object. Opening two windows
with the same static name would immediately lead to a synchronization error, as is shown in Figure 3.3,
“Synchronization Error Between Windows with the Same Name” below. (While also the window captions
are same, they are irrelevant for this problem.)

Figure 3.3. Synchronization Error Between Windows with the Same Name

There are some cases where setting the name explicitly is useful. The launch application below is one ex-
ample, as it always opens the other windows in a window target that is specific to the window name, thereby
never creating two windows with the same URL. Similarly, if you had embedded the application in a
browser frame and the link would open the window in a frame, you would not have problems. Having a

62

Writing a Web Application
Creating Windows Dynamically

single window instance for a URL is also useful if the browser crashes and the user opens the window
again, as it will have kept its previous (server-side) state.

Leaving the window name to be automatically generated allows opening multiple windows with the same
URL, while each of the windows will have a separate state. The URL in the location bar stays unchanged
and the generated window name is used only for the Ajax communications to identify the window object.
A generated name is a string representation of a unique random number, such as "1928676448". You
should be aware of the generated window names when overriding the getWindow() method (and not
unintentionally create a new window instance dynamically for each such request). The condition in the
above example would also filter out the requests for an already existing window with a generated name.

Figure 3.4, “A Dynamically Created Window” shows a dynamically created application-level window
with the URL shown in the address bar. The URL for the application is here
http://localhost:8080/tk5/windowexample/, including the application context, and the
dynamically created window's name is planet-mars.

Figure 3.4. A Dynamically Created Window

The application knows the windows it already has and can return them after the creation. The application
also handles closing and destruction of application-level window objects, as discussed in Section 3.4.3,
“Closing Windows”.

Such dynamic windows could be opened as in the following example:

 public void init() {
 final Window main = new Window("Window Test Application");
 setMainWindow(main);

 // Have some IDs for the dynamically creatable windows.
 final String[] items = new String[] { "mercury", "venus", "earth",
 "mars", "jupiter", "saturn", "uranus", "neptune" };

 // Create a list of links to each of the available window.
 for (int i = 0; i < items.length; i++) {
 // Create a URL for the window.
 String windowUrl = getURL() + "planet-" + items[i];

 // Create a link to the window URL.
 // Using the item ID for the target also opens it in a new
 // browser window (or tab) unique to the window name.
 main.addComponent(new Link("Open window about " + items[i],
 new ExternalResource(windowUrl),
 items[i], -1, -1, Window.BORDER_DEFAULT));
 }
 }

63

Writing a Web Application
Creating Windows Dynamically

Figure 3.5. Opening Windows

3.4.3. Closing Windows

When the user closes an application-level window, the Client-Side Engine running in the browser will report
the event to the server before the page is actually removed. You can catch the event with a Window.CloseL-
istener, as is done in the example below.

 newWindow.addListener(new Window.CloseListener() {
 @Override
 public void windowClose(CloseEvent e) {
 // Do something.
 System.out.println(e.getWindow().getName() + " was closed");

 // Add a text to the main window about closing. (This does
 // not update the main window.)
 getMainWindow().addComponent(
 new Label("Window '" + e.getWindow().getName() +
 "' was closed."));
 }
 });

Notice that the change to the server-side state of the main window (or another application-level window)
does not refresh the window in the browser, so the change will be unseen until user interaction or polling
refreshes the window. This problem and its dangers are discussed in Section 3.4.4, “Caveats in Using
Multiple Windows” below.

The close event does not occur if the browser crashes or the connection is otherwise severed violently. In
such a situation, the window object will be left hanging, which could become a resource problem if you
allow the users to open many such application-level windows. The positive side is that the user can reconnect
to the window using the window URL.

3.4.4. Caveats in Using Multiple Windows

Communication Between Windows

For cases where you need communication between windows, we recommend using floating child windows.
In IT Mill Toolkit Release 5, an application window can not update the data in other windows. The contents
of a window can only be updated when the particular window makes a request to the server. The request
can be caused by user input or through polling.

64

Writing a Web Application
Closing Windows

Changing the server-side state of a window while processing a user event from another window can poten-
tially cause serious problems. Changing the client-side state of a window does not always immediately
communicate the changes to the server. The server-side state can therefore be out of sync with the client-
side state.

Figure 3.6. Communication Between Two Application-Level Windows

The following example creates a second window that changes the contents of the main window, as illustrated
in the figure above. In this simple case, changing the main window contents is safe.

// Create a table in the main window to hold items added in the second window
final Table table = new Table();
table.setPageLength(5);
table.getSize().setWidth(100, Size.UNITS_PERCENTAGE);
table.addContainerProperty("Name", String.class, "");
main.addComponent(table);

// Create the second window
final Window adderWindow = new Window("Add Items");
adderWindow.setName("win-adder");
main.getApplication().addWindow(adderWindow);

// Create selection component to add items to the table
final NativeSelect select = new NativeSelect("Select item to add");
select.setImmediate(true);
adderWindow.addComponent(select);

// Add some items to the selection
String items[] = new String[]{"-- Select --", "Mercury", "Venus",
 "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"};
for (int i=0; i<items.length; i++)
 select.addItem(items[i]);
select.setNullSelectionItemId(items[0]);

// When an item is selected in the second window, add
// table in the main window
select.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // If the selected value is something else but null selection item.
 if (select.getValue() != null) {
 // Add the selected item to the table in the main window
 table.addItem(new Object[]{select.getValue()}, new Integer(table.size()));
 }
 }
});

// Link to open the selection window
Link link = new Link("Click to open second window",
 new ExternalResource(adderWindow.getURL()),

65

Writing a Web Application
Caveats in Using Multiple Windows

 "_new", 50, 200, Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

// Enable polling to update the main window
ProgressIndicator poller = new ProgressIndicator();
poller.addStyleName("invisible");
main.addComponent(poller);

The example uses an invisible ProgressIndicator to implement polling. This is sort of a trick and a more
proper API for polling is under design. Making the progress indicator invisible requires the following CSS
style definition:

.i-progressindicator-invisible {
 display: none;
}

3.5. Referencing Resources

Web applications work over the web and have various resources, such as images or downloadable files,
that the web browser has to get from the server. These resources are typically used in Embedded (images)
or Link (downloadable files) user interface components. Various components, such as TabSheet, can also
include icons, which are also handled as resources.

A web server can handle many of such requests for static resources without having to ask them from the
application, or the Application object can provide them. For dynamic resources, the user application must
be able to create them dynamically. IT Mill Toolkit provides resource request interfaces for applications
so that they can return various kinds of resources, such as files or dynamically created resources. These
include the StreamResource class and URI and parameter handlers described in Section 9.3.1, “URI
Handlers” and Section 9.3.2, “Parameter Handlers”, respectively.

IT Mill Toolkit provides also low-level facilities for retrieving the URI and other parameters of a HTTP
request. We will first look into how applications can provide various kinds of resources and then look into
low-level interfaces for handling URIs and parameters to provide resources and functionalities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in IT Mill Toolkit or in
AJAX applications generally. Please see Section 9.2, “Special Characteristics of AJAX Applications” for
a detailed explanation.

3.5.1. Resource Interfaces and Classes

IT Mill Toolkit has two interfaces for resources: a generic Resource interface and a more specific Applic-
ationResource interface for resources provided by the application.

66

Writing a Web Application
Referencing Resources

Figure 3.7. Resource Interface and Class Diagram

ApplicationResource resources are managed by the Application class. When you create such a resource,
you give the application object to the constructor. The constructor registers the resource in the application
using the addResource method.

Application manages requests for the resources and allows accessing resources using a URI. The URI
consists of the base name of the application and a relative name of the resource. The relative name is
"APP/"+resourceid+"/"+filename, for example "APP/1/myimage.png". The resourceid
is a generated numeric identifier to make resources unique, and filename is the file name of the resource
given in the constructor of its class. However, the application using a resource does not usually need to
consider its URI. It only needs to give the resource to an appropriate Embedded or Link or some other
user interface component, which manages the rendering of the URI.

3.5.2. File Resources

File resources are files stored anywhere in the file system. The use of file resources falls into two main
categories: downloadable files and embedded images.

The file that can be retrieved using a file resource is defined with standard java.io.File class. You can
create the file either with an absolute or relative path, but the base path of the relative path depends on the
installation of the web server. For example, in Tomcat, the default current directory is the installation path
of Tomcat.

3.5.3. Class Loader Resources

The ClassResource allows resources to be loaded from the deployed package of the application using Java
Class Loader. The one-line example below loads an image resource from the application package and
displays it in an Embedded component.

mainwindow.addComponent(new Embedded ("", new ClassResource("smiley.jpg",
mainwindow.getApplication())));

3.5.4.Theme Resources

Theme resources are files included in a theme, typically images. See Chapter 6, Themes for more inform-
ation on themes.

67

Writing a Web Application
File Resources

3.5.5. Stream Resources

Stream resources are application resources that allow creating dynamic resource content. Charts are typical
examples of dynamic images. To define a stream resource, you need to implement the StreamRe-
source.StreamSource interface and its getStream method. The method needs to return an InputStream
from which the stream can be read.

The following example demonstrates the creation of a simple image in PNG image format.

import java.awt.image.*;

public class MyImageSource implements StreamResource.StreamSource {
 ByteArrayOutputStream imagebuffer = null;
 int reloads = 0;

 /* Must implement this method that returns the resource as a stream.*/
 public InputStream getStream () {
 /* Create an image and draw something on it. */
 BufferedImage image = new BufferedImage (200, 200, BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);
 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);
 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);
 drawable.setColor(Color.black);
 drawable.drawString("Reloads="+reloads, 75, 100);
 reloads++;

 try {
 /* Write the image to a buffer. */
 imagebuffer = new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 /* Return a stream from the buffer. */
 return new ByteArrayInputStream(imagebuffer.toByteArray());
 } catch (IOException e) {
 return null;
 }
 }
}

The content of the generated image is dynamic, as it updates the reloads counter with every call. The Im-
ageIO.write() method writes the image to an output stream, while we had to return an input stream, so
we stored the image contents to a temporary buffer.

You can use resources in various ways. Some user interface components, such as Link and Embedded,
take their parameters as a resource.

Below we display the image with the Embedded component. The StreamResource constructor gets a
reference to the application and registers itself in the application's resources. Assume that main is a reference
to the main window and this is the application object.

/* Create an instance of our stream source. */
StreamResource.StreamSource imagesource = new MyImageSource ();

/* Create a resource that uses the stream source and give it a name. The
 * constructor will automatically register the resource in the application. */
StreamResource imageresource = new StreamResource(imagesource, "myimage.png", this);

/* Create an embedded component that gets its contents from the resource. */
main.addComponent(new Embedded("Image title", imageresource));

68

Writing a Web Application
Stream Resources

The image will look as follows:

Figure 3.8. Screenshot of the stream resource example with an embedded image

We named the resource as myimage.png. The application adds a resource key to the file name of the
r e s o u r c e t o m a k e i t u n i q u e . T h e f u l l U R I w i l l b e l i k e
http://localhost:8080/testbench/APP/1/myimage.png. The end APP/1/myimage.png
is the relative part of the URI. You can get the relative part of a resource's URI from the application with
Application.getRelativeLocation().

Another solution for creating dynamic content is an URI handler, possibly together with a parameter
handler. See Section 9.3.1, “URI Handlers” and Section 9.3.2, “Parameter Handlers”.

3.6. Error Handling

3.6.1. Error Indicator and message

All components have a built-in error indicator that can be set explicitly with setComponentError()
or can be turned on implicitly if validating the component fails. As with component caption, the placement
of the indicator is managed by the layout in which the component is contained. Usually, the error indicator
is placed right of the caption text. Hovering the mouse pointer over the field displays the error message.

The following example shows how you can set the component error explicitly. The example essentially
validates field value without using an actual validator.

// Create a field.
final TextField textfield = new TextField("Enter code");
main.addComponent(textfield);

// Let the component error be initially clear. (It actually is by default.)
textfield.setComponentError(null);

// Have a button right of the field (and align it properly).
final Button button = new Button("Ok!");
main.addComponent(button);
((VerticalLayout)main.getLayout()).setComponentAlignment(button, Alignment.BOTTOM_LEFT);

// Handle button clicks
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // If the field value is bad, set its error.
 // (Here the content must be only alphanumeric characters.)
 if (! ((String) textfield.getValue()).matches("^\\w*$")) {
 // Put the component in error state and set the error message.
 textfield.setComponentError(new UserError("Must be letters and numbers"));
 } else {

69

Writing a Web Application
Error Handling

 // Otherwise clear it.
 textfield.setComponentError(null);
 }
 }
});

Figure 3.9. Error indicator active

The Form component handles and displays also the errors of its contained fields so that it displays both
the error indicator and the message in a special error indicator area. See Section 4.15, “Form” and Sec-
tion 4.15.3, “Validating Form Input” for details on the Form component and validation of form input.

3.6.2. Notifications

Notifications are error or information boxes that appear typically at the center of the screen. A notification
box has a caption and optional description and icon. The box stays on the screen either for a defined time
or until the user clicks it. The notification type defines the default appearance and behaviour of a notification.

Notifications are always associated with a window object, which can be a child window (the positioning
is always relative to the entire browser view). The Window class provides a showNotification()
method for displaying notifications. The method takes the caption and an optional description and notific-
ation type as parameters. The method also accepts a notification object of type Window.Notification, as
described further below.

mainwindow.showNotification("This is the caption",
 "This is the description");

Figure 3.10. Notification

The caption and description are, by default, written on the same line. If you want to have a line break
between them, use the XHTML line break markup "
". You can use any XHTML markup in the
caption and description of a notification.

main.showNotification("This is a warning",
 "
This is the <i>last</i> warning",
 Window.Notification.TYPE_WARNING_MESSAGE);

70

Writing a Web Application
Notifications

Figure 3.11. Notification with Formatting

The notification type defines the overall default style and behaviour of a notification. If no notification
type is given, the "humanized" type is used as the default. The notification types, listed below, are defined
in the Window.Notification class.

Table 3.1. Types of Notifications

A user-friendly message that does not annoy too
much: it does not require confirmation by clicking
and disappears very quickly. It is centered and
has a neutral gray color.

TYPE_HUMAN-
IZED_MESSAGE

Warnings are messages of medium importance.
They are displayed with colors that are neither
neutral nor too distractive. A warning is displayed
for 1.5 seconds, but the user can click the message
box to dismiss it. The user can continue to interact
with the application while the warning is dis-
played.

TYPE_WARN-
ING_MESSAGE

Error messages are notifications that require the
highest user attention, with alert colors and by
requiring the user to click the message to dismiss
it. The error message box does not itself include
an instruction to click the message, although the
close box in the upper right corner indicates it
visually. Unlike with other notifications, the user
can not interact with the application while the er-
ror message is displayed.

TYPE_ER-
ROR_MESSAGE

Tray notifications are displayed in the "system
tray" area, that is, in the lower-right corner of the
browser view. As they do not usually obsure any
user interface, they are displayed longer than hu-
manized or warning messages, 3 seconds by de-
fault. The user can continue to interact with the
application normally while the tray notification
is displayed.

TYPE_TRAY_NO-
TIFICATION

All of the features of specific notification types can be controlled with the attributes of Window.Notification.
You can pass an explicitly created notification object to the showNotification() method.

// Create a notification with the default settings for a warning.
Window.Notification notif = new Window.Notification(
 "Be warned!", "This message lurks in the top-left corner!",
 Window.Notification.TYPE_WARNING_MESSAGE);

// Set the position.
notif.setPosition(Window.Notification.POSITION_TOP_LEFT);

// Let it stay there until the user clicks it
notif.setDelayMsec(-1);

71

Writing a Web Application
Notifications

// Show it in the main window.
main.showNotification(notif);

The setPosition() method allows setting the positioning of the notification. The method takes as its
parameter any of the constants:

Window.Notification.POSITION_CENTERED

Window.Notification.POSITION_CENTERED_TOP

Window.Notification.POSITION_CENTERED_BOTTOM

Window.Notification.POSITION_TOP_LEFT

Window.Notification.POSITION_TOP_RIGHT

Window.Notification.POSITION_BOTTOM_LEFT

Window.Notification.POSITION_BOTTOM_RIGHT

The setDelayMSec() allows you to set the time in milliseconds for how long the notification is displayed.
Parameter value -1 means that the message is displayed until the user clicks the message box. It also pre-
vents interaction with other parts of the application window, as is default behaviour for error messages. It
does not, however, add a close box that the error notification has.

3.7. Application Environment

While more and more server based frameworks, libraries, standards, and architectures for Java are invented
to make the programmer's life easier, software deployment seems to get harder and harder. For example,
Java Enterprise Beans tried to make the creation of persistent and networked objects easy and somewhat
automatic, but the number of deployment descriptions got enormous. As IT Mill Toolkit lives in a Java
Servlet container, it must follow the rules, but it tries to avoid adding extra complexity.

All IT Mill Toolkit applications are deployed as Java web applications, which can be packaged as WAR
files. For a detailed tutorial on how web applications are packaged, please refer to any Java book that dis-
cusses Servlets. Sun has an excellent reference online on http://java.sun.com/j2ee/tutorial/1_3-
fcs/doc/WCC3.html [http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html] .

3.7.1. Creating Deployable WAR in Eclipse

To deploy the created application to a web server, you need to create a WAR package. Here we give the
instructions for Eclipse.

Open project properties and first set the name and destination of the WAR file in Tomcat Export to WAR
settings tab. Exporting to WAR is done by selecting Export to WAR from Tomcat Project in project
context menu (just click calc with the right mouse button on Package contents tree).

3.7.2. Web Application Contents

The following files are required in a web application in order to run it.

Web application organization

WEB-INF/web.xml This is the standard web application descriptor that defines
how the application is organized. You can refer to any Java
book about the contents of this file. Also see an example in
Example 3.1, “web.xml”.

72

Writing a Web Application
Application Environment

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html

WEB-INF/lib/itmill-toolkit-5.0.0.jar This is the IT Mill Toolkit library. It is included in the
product package in lib directory.

Your application classes You must include your application classes either in a JAR
file in WEB-INF/lib or as classes in WEB-INF/classes

Your own theme files (OPTIONAL) If your application uses a special theme (look and feel), you
must include it in WEB-INF/lib/themes/themename
directory.

3.7.3. Deployment Descriptor web.xml

The deployment descriptor is an XML file with the name web.xml in the WEB-INF directory of a web
application. It is a standard component in Java EE describing how a web application should be deployed.
The structure of the deployment descriptor is illustrated by the following example. You simply deploy
a p p l i c a t i o n s a s s e r v l e t s i m p l e m e n t e d b y t h e s p e c i a l
com.itmill.toolkit.terminal.gwt.server.ApplicationServlet wrapper class. The
class of the actual application is specified by giving the application parameter with the name of the
specific application class to the servlet. The servlet is then connected to a URL in a standard way for Java
Servlets.

Example 3.1. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.itmill.toolkit.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>MyApplicationClass</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The descriptor defines a servlet with name myservlet. The servlet class, com.itmill.toolkit.termin-
al.gwt.server.ApplicationServlet, is provided by IT Mill Toolkit framework and it should be the same
for all IT Mill Toolkit projects. The servlet takes the class name Calc of the user application class as a
parameter, including the full package path to the class. If the class is in the default package the package
path is obviously not used.

The url-pattern is defined above as /*. This matches to any URL under the project context. We
defined above the project context as myproject so the application URL will be
http://localhost:8080/myproject/. If the project were to have multiple applications or servlets,
they would have to be given different names to distinguish them. For example, url-pattern /myapp/*
would match a URL such as http://localhost:8080/myproject/myapp/. Notice that the slash
and the asterisk must be included at the end of the pattern.

73

Writing a Web Application
Deployment Descriptor web.xml

Notice also that if the URL pattern is other than root /* (such as /myapp/*), you will also need to make
a servlet mapping to /ITMILL/* (unless you are serving it statically as noted below). For example:

 ...
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/myurl/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/ITMILL/*</url-pattern>
 </servlet-mapping>

You do not have to provide the above /ITMILL/* mapping if you serve both the widget sets and (custom
and default) themes statically in WebContent/ITMILL/ directory. The mapping simply allows serving
them dynamically from the IT Mill Toolkit JAR. Serving them statically is recommended for production
environments as it is much faster.

For a complete example on how to deploy applications, see the demos included in the IT Mill Toolkit in-
stallation package, especially the WebContent/WEB-INF directory.

Deployment Descriptor Parameters

Deployment descriptor can have many parameters and options that control the execution of a servlet. You
can find a complete documentation of the deployment descriptor in Java Servlet Specification at
http://java.sun.com/products/servlet/.

By default, IT Mill Toolkit applications run in debug mode, which should be used during development.
This enables various debugging features. For production use, you should have put in your web.xml the
following parameter:

<context-param>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
 <description>IT Mill Toolkit production mode</description>
</context-param>

The parameter and the debug and production modes are described in detail in Section 9.1, “Debug and
Production Mode”.

One often needed option is the session timeout. Different servlet containers use varying defaults for timeouts,
such as 30 minutes for Apache Tomcat. You can set the timeout with:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

After the timeout expires, the close() method of the Application class will be called. You should im-
plement it if you wish to handle timeout situations.

3.8. Embedding Applications in Web Pages

Many web applications and especially web sites are not all AJAX, but AJAX is used only for specific
functionalities. In practice, many web applications are a mixture of dynamic web pages and AJAX applic-
ations embedded to such pages.

74

Writing a Web Application
Embedding Applications in Web Pages

Embedding IT Mill Toolkit applications is easy. There are two basic ways to embed them. One is to have
a <div> placeholder for the web application and load the IT Mill Toolkit Client-Side Engine with a simple
JavaScript code. The second method is even easier, which is to simply use the <iframe> element. Both
of these methods have advantages and disadvantages. The <div> method can only embed one application
in a page, while the <iframe> method can embed as many as needed. One disadvantage of the <iframe>
method is that the size of the <iframe> element is not flexible according to the content while the <div>
method allows such flexibility. The following sections look closer into these two embedding methods.

3.8.1. Embedding Inside a <div> Element

The loading code for the Client-Side Engine has changed in IT Mill Toolkit version 5.1.2 and the explanation
below is no longer compatible with 5.1.2 and later versions. Please view the source code of the initial page
of your application in your browser or see the WebContent/multiapp.html for an example.

You can embed an IT Mill Toolkit application inside a web page with a method that is equivalent to loading
the initial page content from the application servlet in a non-embedded application. Normally, the Applic-
ationServlet servlet generates an initial page that contains the correct parameters for the specific application.
You can easily configure it to load multiple IT Mill Toolkit applications on the same page, assuming that
they use the same widget set.

You can view the initial page for your application easily simply by opening the application in a web browser
and viewing the HTML source code. You could just copy and paste the embedding code from the default
initial page. It has, however, some extra functionality that is not normally needed: it generates some of the
script content with document.write() calls, which is useful only when you are running the application
as a portlet in a portal. The method outlined below is much simpler.

The WebContent/multiapp.html file included in the IT Mill Toolkit installation package provides
an example of embedding (multiple) IT Mill Toolkit applications in a page. After launching the demo ap-
plication, you can view the example at URL http://localhost:8888/multiapp.html. Notice
that the example assumes the use of root context for the applications (/).

Embedding requires four elements inside the HTML document:

1. In the <head> element, you need to define the application URI and parameters and load the IT
Mill Toolkit Client-Side Engine. The itmill variable is an associative map that can contain
various runtime data used by the Client-Side Engine of IT Mill Toolkit. The
toolkitConfigurations item is itself an associate map that contains parameters for each
of the applications embedded in the page. The map must contain the following items:

Table 3.2. toolkitConfigurations parameters

The application URI consists of the context and the application path. If the context
is /mycontext and the application path is myapp, the appUri would be
/mycontext/myapp. The multiapp.html example assumes the use of root
context, which is used in the demo application.

appUri

The PATHINFO parameter for the Servlet.pathInfo

URI of the application theme. The URI must include application context and the
path to the theme directory. Themes are, by default, stored under the
/ITMILL/themes/ path.

themeUri

This item is itself an associative map that contains two parameters:
toolkitVersion contains the version number of the IT Mill Toolkit version
used by the application. The applicationVersion parameter contains the
version of the particular application.

versionInfo

75

Writing a Web Application
Embedding Inside a <div> Element

The following example defines two applications to run in the same window: the Calculator and
Hello World examples. In the example, the application context is /tk5.

<script type="text/javascript">
 var itmill = {
 toolkitConfigurations: {
 'calc': {
 appUri:'/tk5/Calc',
 pathInfo: '/',
 themeUri: '/tk5/ITMILL/themes/example',
 versionInfo : {
 toolkitVersion:"5.9.9-INTERNAL-NONVERSIONED-DEBUG-BUILD",
 applicationVersion:"NONVERSIONED"
 }
 },
 'hello': {
 appUri:'/tk5/HelloWorld',
 pathInfo: '/',
 themeUri: '/tk5/ITMILL/themes/example',
 versionInfo : {
 toolkitVersion:"5.9.9-INTERNAL-NONVERSIONED-DEBUG-BUILD",
 applicationVersion:"NONVERSIONED"
 }
 }
 }};
</script>

2. Loading the IT Mill Toolkit Client-Side Engine is done with the following kind of line in the
<head> element:

<script language='javascript'
 src='/itmill-toolkit-examples/ITMILL/widgetsets/com.itmill.toolk
it.terminal.gwt.DefaultWidgetSet/com.itmill.toolkit.terminal.gwt.DefaultWi
dgetSet.nocache.js'></script>

The engine URI consists of the context of the web application, itmill-toolkit-examples
above, followed by the path to the JavaScript (.js) file of the widget set, relative to the
WebContent directory. The file contains the Client-Side Engine compiled for the particular
widget set. The line above assumes the use of the default widget set of IT Mill Toolkit. If you
have made custom widgets that are defined in a custom widget set, you need to use the path to
the compiled widget set file. Widget sets must be compiled under the
WebContent/ITMILL/widgetsets directory.

3. In the <html> element, you need to do a routine inclusion of GWT history iframe element
as follows:

<iframe id="__gwt_historyFrame" style="width:0;height:0;border:0"></iframe>

4. The location of the IT Mill Toolkit application is defined with a div placeholder element having
id="itmill-ajax-window" as follows:

<div id="itmill-ajax-window"/>

Below is a complete example of embedding an application. It works out-of-the-box with the Calculator
demo application.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Embedding Example</title>

76

Writing a Web Application
Embedding Inside a <div> Element

 <!-- Set parameters for the IT Mill Toolkit Client-Side Engine. -->
 <script type="text/javascript">
 var itmill = {appUri:'Calc', pathInfo: '/'};
 </script>

 <!-- Load the IT Mill Toolkit Client-Side Engine. -->
 <script language='javascript' src='/itmill-toolkit-examples/ITMILL/widgetse
ts/com.itmill.toolkit.terminal.gwt.DefaultWidgetSet/com.itmill.toolkit.terminal
.gwt.DefaultWidgetSet.nocache.js'></script>

 <!-- We can stylize the web application. -->
 <style>
 #itmill-ajax-window {background: #c0c0ff;}
 .i-button {background: pink;}
 </style>
 </head>

 <body>
 <!-- This <iframe> element is required by GWT. -->
 <iframe id="__gwt_historyFrame" style="width:0;height:0;border:0"></iframe>

 <h1>This is a HTML page</h1>
 <p>Below is the IT Toolkit Application inside a table:</p>
 <table align="center" border="3" style="background: yellow;">
 <tr><th>The Calculator</th></tr>
 <tr>
 <td>
 <!-- Placeholder <div> for the IT Mill Toolkit application -->
 <div id="itmill-ajax-window"/>
 </td>
 </tr>
 </table>
 </body>
</html>

The page will look as follows:

Figure 3.12. Embedded Application

You can style the web application with themes as described in Chapter 6, Themes. The Client-Side Engine
loads the style sheets required by the application. In addition, you can do styling in the embedding page,
as was done in the example above.

77

Writing a Web Application
Embedding Inside a <div> Element

The Reservation Demo and Windowed Demos provide similar examples of embedding an application in
a web page. The embedding web pages are WebContent/reservr.html and
WebContent/windoweddemos.html, respectively.

The disadvantage of this embedding method is that there can only be one web application embedded in a
page. One is usually enough, but if it is not, you need to use the <iframe> method below.

3.8.2. Embedding Inside an <iframe> Element

Embedding an IT Mill Toolkit application inside an <iframe> element is even easier than the method
described above, as it does not require definition of any IT Mill Toolkit specific definitions. The use of
<iframe> makes it possible to embed multiple web applications or two different views to the same ap-
plication on the same page.

You can embed an application with an element such as the following:

<iframe src="/itmill-toolkit-examples/Calc"></iframe>

The problem with <iframe> elements is that their size of is not flexible depending on the content of the
frame, but the content must be flexible to accommodate in the frame. You can set the size of an <iframe>
element with height and width attributes.

Below is a complete example of using the <iframe> to embed two applications in a web page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Embedding in IFrame</title>
 </head>

 <body style="background: #d0ffd0;">
 <h1>This is a HTML page</h1>
 <p>Below are two IT Mill Toolkit applications embedded inside a table:</p>

 <table align="center" border="3">
 <tr>
 <th>The Calculator</th>
 <th>The Color Picker</th>
 </tr>
 <tr valign="top">
 <td>
 <iframe src="/itmill-toolkit-examples/Calc" height="200"
 width="150" frameborder="0"></iframe>
 </td>
 <td>
 <iframe src="/itmill-toolkit-examples/colorpicker" height="330" width="400"
 frameborder="0"></iframe>
 </td>
 </tr>
 </table>
 </body>
</html>

The page will look as shown in Figure 3.13, “IT Mill Toolkit Applications Embedded Inside IFrames”
below.

78

Writing a Web Application
Embedding Inside an <iframe> Ele-

ment

Figure 3.13. IT Mill Toolkit Applications Embedded Inside IFrames

79

Writing a Web Application
Embedding Inside an <iframe> Ele-

ment

80

Chapter 4. User Interface Components
This chapter provides an overview and a detailed description of all non-layout components in IT Mill
Toolkit. Many features of the components are designed for various use cases and design patterns, which
are mentioned below.

As most components are used inside a layout, you should familiarize yourself with the layout components
in Chapter 5, Managing Layout.

4.1. Overview

IT Mill Toolkit provides a comprehensive set of user interface components and allows you to define custom
components. Figure 4.1, “UI Component Inheritance Diagram” illustrates the inheritance hierarchy of the
UI component classes and interfaces.

Figure 4.1. UI Component Inheritance Diagram

Interfaces are displayed in yellow, abstract classes in red, and regular classes in blue. At the bottom of the
interface hierarchy, we have the Component interface. At the bottom of the class hierarchy, we have the
AbstractComponent class. It is inherited by two other abstract classes: AbstractField, inherited further
by field components and AbstractComponentContainer, inherited by various container components.
Some miscellaneous components, such as labels and links, inherit this base class directly.

81

The layout of the various components in a window is controlled, logically, by layout components, just like
in conventional Java UI toolkits for desktop applications. In addition, with the CustomLayout component,
you can write a custom layout as an XHTML template that includes the locations of any contained com-
ponents. Looking at the inheritance diagram, we can see that layout components inherit the AbstractCom-
ponentContainer and the Layout interface. Layout components are described in detail in Chapter 5,
Managing Layout.

Looking at it from the perspective of an object hierarchy, we would have a Window object, which contains
a hierachy of layout components, which again contain other layout components, field components, and
other visible components.

You can browse the available UI components in the Feature Browser of the IT Mill Toolkit Demo Applic-
ation. The Feature Browser shows a description, a list of properties, JavaDoc documentation, and a code
sample for each of the components. On the right side of the screen, you can find the Properties panel, which
you can use to edit the properties of the displayed component.

4.2. Label

Label is a text component that you can use to display non-editable text. The text will wrap around if the
width of the containing component limits the length of the lines, except for the preformatted text.

/* Some container for the Label. */
Panel panel = new Panel("Panel Containing a Label");
main.addComponent(panel);

panel.addComponent(new Label("This is a Label inside a Panel. There is enough " +
 "text in the label to make the text wrap if it " +
 "exceeds the width of the panel."));

Figure 4.2. The Label Component

The contents of a label are formatted depending on the content mode. By default, the text is assumed to
be plain text and any contained XML-specific characters will be quoted appropriately to allow rendering
the contents of a label in XHTML in a web browser. The content mode can be set in the constructor or
with setContentMode(), and can have the following values:

82

User Interface Components
Label

Table 4.1. Content Modes for Label

The default content mode is CONTENT_TEXT (see below).CONTENT_DEFAULT

Content mode, where the label contains preformatted text. It will be, by default,
rendered with a fixed-width typewriter font. Preformatted text can contain
line breaks, written in Java with the \n escape sequence for a newline char-
acter (ASCII 0x0a), or tabulator characters written with \t (ASCII 0x08).

CONTENT_PREFORMATTED

Content mode, where the label contains raw text. Output is not required to be
valid XML. It can be, for example, HTML, which can be unbalanced or oth-
erwise invalid XML. The example below uses the
 tag in HTML. While
XHTML should be preferred in most cases, this can be useful for some spe-
cific purposes where you may need to display loosely formatted HTML con-
tent. The raw mode also preserves character entities, some of which might
otherwise be interpreted incorrectly.

CONTENT_RAW

Content mode, where the label contains only plain text. All characters are al-
lowed, including the special <, >, and & characters in XML or HTML, which
are quoted properly in XHTML while rendering the component. This is the
default mode.

CONTENT_TEXT

Formatted content mode, where the contents are XML that is restricted to
UIDL 1.0, the internal language of IT Mill Toolkit for AJAX communications
between the server and the browser. Obsolete since IT Mill Toolkit 5.0.

CONTENT_UIDL

Content mode, where the label contains XHTML. The content will be enclosed
in a DIV element having the namespace
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd".

CONTENT_XHTML

Content mode, where the label contains well-formed and well-balanced XML.
Each of the root elements must have their default namespace specified.

CONTENT_XML

Warning

Notice that the validity of XML or XHTML in a Label is not checked in the server during rendering
of the component and any errors can result in an error in the browser! You should validate the
content before displaying it in the component, especially if it comes from an uncertain source.

The following example demonstrates the use of Label in different modes.

GridLayout labelgrid = new GridLayout (2,1);
labelgrid.addComponent (new Label ("CONTENT_DEFAULT"));
labelgrid.addComponent (new Label ("This is a label in default mode: <plain text>",
 Label.CONTENT_DEFAULT));
labelgrid.addComponent (new Label ("CONTENT_PREFORMATTED"));
labelgrid.addComponent (new Label ("This is a preformatted label.\n"+
 "The newline character \\n breaks the line.",
 Label.CONTENT_PREFORMATTED));
labelgrid.addComponent (new Label ("CONTENT_RAW"));
labelgrid.addComponent (new Label ("This is a label in raw mode.
It can contain, "+
 "for example, unbalanced markup.",
 Label.CONTENT_RAW));
labelgrid.addComponent (new Label ("CONTENT_TEXT"));
labelgrid.addComponent (new Label ("This is a label in (plain) text mode",
 Label.CONTENT_TEXT));
labelgrid.addComponent (new Label ("CONTENT_XHTML"));
labelgrid.addComponent (new Label ("<i>This</i> is an XHTML formatted label",
 Label.CONTENT_XHTML));
labelgrid.addComponent (new Label ("CONTENT_XML"));
labelgrid.addComponent (new Label ("This is an <myelement>XML</myelement> formatted "+
 "label",

83

User Interface Components
Label

 Label.CONTENT_XML));
main.addComponent(labelgrid);

The rendering will look as follows:

Figure 4.3. Label Modes Rendered on Screen

Using the XHTML, XML, or raw modes allow inclusion of, for example, images within the text flow,
which is not possible with any regular layout components. The following example includes an image
within the text flow, with the image coming from a class loader resource.

ClassResource labelimage = new ClassResource ("labelimage.jpg", this);
main.addComponent(new Label("Here we have an image <img src=\"" +
 this.getRelativeLocation(labelimage) + "\"/> within text.",
 Label.CONTENT_XHTML));

When you use a class loader resource, the image has to be included in the JAR of the web application. In
this case, the labelimage.jpg needs to be in the default package. When rendered in a web browser,
the output will look as follows:

Figure 4.4. Referencing An Image Resource in Label

Another solution would be to use the CustomLayout component, where you can write the component
content as an XHTML fragment in a theme, but such a solution may be too heavy for most cases, and not
flexible enough if the content needs to be dynamically generated.

Notice that the rendering of XHTML depends on the assumption that the client software and the terminal
adapter are XHTML based. It is possible to write a terminal adapter for a custom thin client application,
which may not be able to render XHTML at all. There are also differences between web browsers in their
support of XHTML.

4.3. Link

The Link component allows making references to resources that are either external or provided by the web
server or by the application itself. While a Link appears like a hyperlink, it is not handled in the web
browser. When a user clicks a link, the server receives an event and typically opens the referenced resource
in the target window of the link. Resources are explained in Section 3.5, “Referencing Resources”.

Links to external resources can be made by using a URI as follows:

main.addComponent(new Link ("link to a resource",
 new ExternalResource("http://www.itmill.com/")));

84

User Interface Components
Link

With the simple contructor used in the above example, the link is opened in the current window. Using the
constructor that takes the target window as a parameter, or by setting the window with setWindow, you
can open the resource in another window, such as a native popup window or a FrameWindow. As the
target window can be defined as a target string managed by the browser, the target can be any window,
including windows not managed by the application itself.

When the user clicks the link, the application will receive an event regarding the click and handle it to
provide the resource. The link is therefore not an <a href> element in HTML and it does not have an
URI. This has some additional consequences, such as that a link can not be marked as "visited" by the
browser, unlike normal hyperlinks. If you wish to have an actual HTML anchor element, you need to
customize the rendering of the component or use a Label with XHTML content mode and write the anchor
element by yourself.

CSS Style Rules

The Link component has i-link style by default.

.i-link { }

When the mouse pointer hovers over the link, it will also have the over style.

4.4.TextField

TextField is one of the most common user interface components and is highly versatile. It supports both
single- and multi-line editing, password input, and buffering.

The following example creates two simple text fields: a single-line and a multi-line TextField.

/* Add a single-line text field. */
TextField subject = new TextField("Subject");
subject.setColumns(40);
main.addComponent(subject);

/* Add a multi-line text field. */
TextField message = new TextField("Message");
message.setRows(7);
message.setColumns(40);
main.addComponent(message);

Figure 4.5. Single- and Multi-Line Text Field Example

Notice how font size affects the width of the text fields even though the width was set with the same
number of columns. This is a feature of HTML.

85

User Interface Components
TextField

4.5. Rich Text Area

The RichTextArea field allows entering or editing formatted text. The toolbar provides all basic editing
functionalities. The text content of RichTextArea is represented in HTML format. RichTextArea inherits
TextField and does not add any API functionality over it. You can add new functionality by extending the
client-side components IRichTextArea and IRichTextToolbar.

As with TextField, the textual content of the rich text area is the Property of the field and can be set with
setValue() and read with getValue().

// Create a rich text area
final RichTextArea rtarea = new RichTextArea();
rtarea.setCaption("My Rich Text Area");

// Set initial content as HTML
rtarea.setValue("<h1>Hello</h1>\n<p>This rich text area contains some text.</p>");

Figure 4.6. Rich Text Area Component

Above, we used context-specific tags such as <h1> in the initial HTML content. The rich text area com-
ponent does not allow creating such tags, only formatting tags, but it does preserve them unless the user
edits them away. Any non-visible whitespace such as the new line character (\n) are removed from the
content. For example, the value set above will be as follows when read from the field with getValue():

<h1>Hello</h1> <p>This rich text area contains some text.</p>

The rich text area is one of the few components in IT Mill Toolkit that contain textual labels. The selection
boxes in the toolbar are in English, and not be localized currently otherwise but by inheriting or reimple-
menting the client-side IRichTextToolbar widget. The buttons can be localized simply with CSS by
downloading a copy of the toolbar background image, editing it, and replacing the default toolbar. The
toolbar is a single image file from which the individual button icons are picked, so the order of the icons
is different from the rendered. The image file depends on the client-side implementation of the toolbar.

.i-richtextarea-richtextexample .gwt-ToggleButton .gwt-Image {
 background-image: url(img/richtextarea-toolbar-fi.png) !important;
}

Figure 4.7. Regular English and a Localized Rich Text Area Toolbar

86

User Interface Components
Rich Text Area

CSS Style Rules
.i-richtextarea { }
.i-richtextarea .gwt-RichTextToolbar { }
.i-richtextarea .gwt-RichTextArea { }

The rich text area consists of two main parts: the toolbar with overall style
.gwt-RichTextToolbar and the editor area with style .gwt-RichTextArea. The editor
area obviously contains all the elements and their styles that the HTML content contains. The
toolbar contains buttons and drop-down list boxes with the following respective style names:

.gwt-ToggleButton { }

.gwt-ListBox { }

4.6. Date and Time Input

The DateField component provides the means to display andinput date and time. The field comes in two
variations: PopupDateField with numeric input fields and a popup calendar view and InlineDateField
with the calendar view always visible and the numeric input fields only for time. The DateField base class
defaults to the popup variation.

The example below illustrates the use of the DateField with the default style. We set the time of the
DateField to current time with the default constructor of the java.util.Date class.

/* Create a DateField with the default style. */
DateField date = new DateField();

/* Set the date and time to present. */
date.setValue(new java.util.Date());

Figure 4.8. Example of the Date Field with Default Style

The default style provides date input using a text box for the date and combo boxes for the time, down to
milliseconds. Pressing the "..." button right of the date opens a month view for selecting the date.

You probably will not need milliseconds in most applications, and might not even need the time, but just
the date. The visibility of the input components is controlled by resolution of the field which can be set
with setResolution() method. The method takes as its parameters the lowest visible component,
typically RESOLUTION_DAY for just dates and RESOLUTION_MIN for dates with time in hours and
minutes. Please see the API Reference for a complete list of resolution parameters.

4.6.1. Calendar

The calendar style of the DateField provides a date picker component with a month view, just like the
one in the default style that opens by clicking the "..." button. The user can navigate months and years by
clicking the appropriate arrows.

/* Create a DateField with the calendar style. */
DateField date = new DateField("Here is a calendar field");
date.setStyle("calendar");

/* Set the date and time to present. */
date.setValue(new java.util.Date());

main.addComponent(date);

87

User Interface Components
Date and Time Input

Figure 4.9. Example of the Date Field with Calendar Style

4.6.2. DateField Locale

The date fields use the locale set for the component, which defaults to the system locale. You can set a
custom locale with the setLocale() method of AbstractComponent.

4.7. Button

The Button is the primary user interface component that is normally used for finalizing input and initiating
some action. When the user clicks a button, a Button.ClickEvent is emitted. A listener that inherits the
Button.ClickListener interface can handle clicks with the buttonClick() method.

public class TheButton extends CustomComponent implements Button.ClickListener {
 Button thebutton;

 public TheButton() {
 /* Create a Button with the given caption. */
 thebutton = new Button ("Do not push this button");

 /* Listen for ClickEvents. */
 thebutton.addListener(this);

 setCompositionRoot(thebutton);
 }

 /** Handle button click events from the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
}

Figure 4.10. An Example of a Button

As a user interface often has several buttons, you can differentiate between them either by comparing the
Button object reference returned by the getButton() method of Button.ClickEvent to a kept reference
or by using a separate listener method for each button. The listening object and method can be given to
the constructor. For a detailed description of these patterns together with some examples, please see Sec-
tion 2.4, “Events and Listeners”.

88

User Interface Components
DateField Locale

CSS Style Rules
.i-button { }

The exact CSS style name can be different if a Button has the switchMode attribute enabled.
See the alternative CSS styles below.

4.8. Check Box

Check box is a two-state selection component that can be either checked or unchecked. The caption of the
check box will be placed right of the actual check box. IT Mill Toolkit provides two ways to create check
boxes: individual check boxes with the CheckBox component described in this section and check box
groups with the OptionGroup component in multiple selection mode, as described in Section 4.9.3, “Radio
Button and Check Box Groups with OptionGroup”.

Clicking on a check box will change its state. The state is the Boolean property of the Button, and can be
set with setValue() and obtained with getValue() method of the Property interface. Changing the
value of a check box will cause a ValueChangeEvent, which can be handled by a ValueChangeListener.

/* A check box with default state (not checked, i.e., false). */
final CheckBox checkbox1 = new CheckBox("My CheckBox");
main.addComponent(checkbox1);

/* Another check box with explicitly set checked state. */
final CheckBox checkbox2 = new CheckBox("Checked CheckBox");
checkbox2.setValue(true);
main.addComponent(checkbox2);

/* Make some application logic. We use anynymous listener classes here.
 * The above references were defined as "final" to allow accessing them
 * from inside anonymous classes. */
checkbox1.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 /* Copy the value to the other checkbox. */
 checkbox2.setValue(checkbox1.getValue());
 }
});
checkbox2.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 /* Copy the value to the other checkbox. */
 checkbox1.setValue(checkbox2.getValue());
 }
});

Figure 4.11. An Example of a Check Box

For an example on the use of check boxes in a table, see Section 4.10, “Table”.

CSS Style Rules
.i-checkbox { }

89

User Interface Components
Check Box

4.9. Selecting Items

IT Mill Toolkit provides several alternative choices for selecting one or more items from a list. The selection
components allow selecting one or more items from a list of items. The items are Item objects contained
in a Container. The choices are based on the AbstractSelect base class.

The following selection classes are available:

Table 4.2. Selection Components

Provides a drop-down list for single selection and a multi-line list in multiselect mode.Select

Provides selection using the native selection component in the browser, typically a drop-
down list for single selection and a multi-line list in multiselect mode. This uses the
<select> element in HTML.

NativeSelect

Shows the items as a vertically arranged group of radio buttons in the single selection
mode and of check boxes in multiple selection mode.

OptionGroup

Shows two list boxes side by side where the user can select items from a list of available
items and move them to a list of selected items using control buttons.

TwinColSelect

In addition, the Tree and Table components allow special forms of selection. They also inherit the Ab-
stractSelect.

The selection components provide the current selection as an item identifier from the Property interface
of the component, that is, as the value of the component. You can get the value, which is an item identifier
object, with getValue() of the Property interface. In multiselect mode, the property will be an unmodi-
fiable set of item identifiers. If no item is selected, the property will be null in single selection mode or
an empty collection in multiselect mode.

New items are added with the addItem() method, implemented for the Container interface. The
method takes the item identifier (IID) object as a parameter, and by default uses the identifier also as the
caption of the item. The identifier is typically a String. The addItem() method also creates an empty
Item, which itself has little relevance in the Select component, as the properties of an item are not used in
any way by the component.

/* Create a Select component and add it to a layout. */
Select select = new Select ("Select something here");
main.addComponent(select);

/* Fill the component with some items. */
final String[] planets = new String[] {"Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};
for (int i=0; i<planets.length; i++)
 select.addItem(planets[i]);

We could as well have added the item identifiers as integers, for example, and set the captions explicitly.

The Select and NativeSelect components will show "-" selection when no actual item is selected. This is
the null selection item identifier. You can set an alternative ID with setNullSelectionItemId().
Setting the alternative null ID is merely a visual text; the getValue() will still return null value if no
item is selected, or an empty set in multiselect mode.

The item identifier of the currently selected item will be set as the property of the Select object. You can
access it with the getValue method of the Property interface of the component. Also, when handling
changes in a Select component with the Property.ValueChangeListener interface, the Prop-

90

User Interface Components
Selecting Items

erty.ValueChangeEvent will have the selected item as the property of the event, accessible with the
getProperty method.

Figure 4.12. Retrieval of the Currently Selected Item

The item and its identifier can be of any object type. The caption of the items can be retrieved from various
sources, as defined with the caption mode of the component, which you can set with the
setItemCaptionMode() m e t h o d . T h e d e f a u l t m o d e i s
ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID. In addition to a caption, an item can have an
icon. The icon of an item is set with setItemIcon().

91

User Interface Components
Selecting Items

Table 4.3. Caption Modes for Selection Components

This is the default caption mode and its flexib-
ility allows using it in most cases. By default,

ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID

the item identifier will be used as the caption.
The caption is retrieved with toString()
method of the item identifier object. If the
caption is specified explicitly with
setItemCaption(), it overrides the item
identifier.

Captions must be explicitly specified with
setItemCaption(). If they are not, the

ITEM_CAPTION_MODE_EXPLICIT

caption will be empty. Such items with empty
captions will nevertheless be displayed in the
Select component as empty rows. If they have
an icon, they will be visible.

Only icons are shown, captions are hidden.
Notice that icons are not supported in the

ITEM_CAPTION_MODE_ICON_ONLY

themes in IT Mill Toolkit version 4 (see be-
low).

String representation of the item identifier ob-
ject is used as caption. This is useful when the

ITEM_CAPTION_MODE_ID

identifier is actually an application specific
object. For example:

class Planet extends Object {
 String planetName;
 Planet (String name) {
 planetName = name;
 }
 public String toString () {
 return "The Planet " +
planetName;
 }
 }
 ...
 SelectExample (Application
application) {
 ...
 for (int i=0; i<planets.length;
 i++)
 select.addItem(new
Planet(planets[i]));
 ...
 }

Index number of item is used as caption. This
caption mode is applicable only to data sources

ITEM_CAPTION_MODE_INDEX

that implement the Container.Indexed inter-
face. If the interface is not available, the com-
ponent will throw a ClassCastException. The
Select component itself does not implement
this interface, so the mode is not usable without
a separate data source. An IndexedContainer,
for example, would work.

92

User Interface Components
Selecting Items

String representation of item, acquired with
toString(), is used as the caption. This is
applicable mainly when using a custom Item
class, which also requires using a custom
Container that is used as a data source for the
Select component.

ITEM_CAPTION_MODE_ITEM

Item captions are read from the String repres-
entation of the property with the identifier
specified with
setItemCaptionPropertyId(). This
is useful, for example, when you have a Table
component that you use as the data source for
the Select, and you want to use a specific table
column for captions.

ITEM_CAPTION_MODE_PROPERTY

Notice that while the Select component allows associating an icon with each item with setItemIcon(),
the icons are not supported in the themes in IT Mill Toolkit version 4. This is because HTML does not
support images inside select elements. Icons are also not really visually applicable for optiongroup
and twincol styles.

4.9.1. Basic Select Component

The Select component allows, in single selection mode, selecting an item from a drop-down list, or in
multiple selection mode, from a list box that shows multiple items.

Figure 4.13. The Select Component

Combo Box Behaviour

The Select component will act as a combo box in single selection mode, allowing either to choose the
value from the drop-down list or to write the value in the text field part of the component.

Filtered Selection

The Select component allows filtering the items available for selection. The component shows as an input
box for entering text. The text entered in the input box is used for filtering the available items shown in a

93

User Interface Components
Basic Select Component

drop-down list. Pressing Enter will complete the item in the input box. Pressing Up- and Down-arrows
can be used for selecting an item from the drop-down list. The drop-down list is paged and clicking on the
scroll buttons will change to the next or previous page. The list selection can also be done with the arrow
keys on the keyboard. The shown items are loaded from the server as needed, so the number of items held
in the component can be quite large.

IT Mill Toolkit provides two filtering modes: FILTERINGMODE_CONTAINS matches any item that
contains the string given in the text field part of the component and FILTERINGMODE_STARTSWITH
matches only items that begin with the given string. The filtering mode is set with setFilteringMode().
Setting the filtering mode to the default value FILTERINGMODE_OFF disables filtering.

Select select = new Select("Enter containing substring");

select.setFilteringMode(AbstractSelect.Filtering.FILTERINGMODE_CONTAINS);

/* Fill the component with some items. */
final String[] planets = new String[] {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn", "Uranus", "Neptune" };

for (int i = 0; i < planets.length; i++)
 for (int j = 0; j < planets.length; j++) {
 select.addItem(planets[j] + " to " + planets[i]);

The above example uses the containment filter that matches to all items containing the input string. As
shown in Figure 4.14, “Filtered Selection” below, when we type some text in the input area, the drop-down
list will show all the matching items.

Figure 4.14. Filtered Selection

The FilterSelect demo in the IT Mill Toolkit Demo Application provides an example of filtering items in
a Select component.

CSS Style Rules
.i-filterselect { }
.i-filterselect-input { }
.i-filterselect-button { }
.i-filterselect-suggestpopup { }
.i-filterselect-prefpage-off { }
.i-filterselect-suggestmenu { }
.i-filterselect-status { }

94

User Interface Components
Basic Select Component

In its default state, only the input field of the Select component is visible. The entire component
is enclosed in i-filterselect style, the input field has i-filterselect-input style
and the button in the right end that opens and closes the drop-down result list has
i-filterselect-button style.

The drop-down result list has an overall i-filterselect-suggestpopup style. It contains
the list of suggestions with i-filterselect-suggestmenu style and a status bar in the
bottom with i-filterselect-status style. The list of suggestions is padded with an area
with i-filterselect-prefpage-off style above and below the list.

4.9.2. Native Selection Component NativeSelect

NativeSelect offers the native selection component in web browsers, using an HTML <select> element.
In single selection mode, the component is shown as a drop-down list, and in multiple selection mode as
a list box.

CSS Style Rules
.i-select-optiongroup {}
.i-checkbox, .i-select-option {}
.i-radiobutton, .i-select-option {}

The i-select-optiongroup is the overall style for the component. Each check box will
have the i-checkbox style and each radio button the i-radiobutton style. Both the radio
buttons and check boxes will also have the i-select-option style that allows styling regard-
less of the option type.

4.9.3. Radio Button and Check Box Groups with OptionGroup

The OptionGroup class provides selection from alternatives using a group of radio buttons in single selec-
tion mode. In multiple selection mode, the items show up as check boxes.

OptionGroup optiongroup = new OptionGroup("My Option Group");

/* Use multiple selection mode. */
myselect.setMultiSelect(true);

Figure 4.15. Radio Button Group

It is also possible to create the check boxes individually using the CheckBox class, as described in Sec-
tion 4.8, “Check Box”. The advantages of the OptionGroup component are that as it maintains the indi-
vidual check box objects, you can get the array of all currently selected items easily, and that you can
easily change the appearance of the component to another style.

95

User Interface Components
Native Selection Component Nat-

iveSelect

CSS Style Rules
.i-select-optiongroup {}
.i-checkbox, .i-select-option {}
.i-radiobutton, .i-select-option {}

The i-select-optiongroup is the overall style for the component. Each check box will
have the i-checkbox style and each radio button the i-radiobutton style. Both the radio
buttons and check boxes will also have the i-select-option style that allows styling regard-
less of the option type.

4.9.4.Twin Column Selection with TwinColSelect

The TwinColSelect class provides a multiple selection component that shows two lists side by side. The
user can select items from the list on the left and click on the ">>" button to move them to the list on the
right. Items can be moved back by selecting them and clicking on the "<<" button.

Figure 4.16. Twin Column Selection

CSS Style Rules
.i-select-twincol {}
.i-select-twincol-options {}
.i-select-twincol-selections {}
.i-select-twincol-buttons {}
.i-select-twincol-deco {}

4.9.5. Allowing Adding New Items

The selection components allow the user to add new items, with a user interface similar to combo boxes
in desktop user interfaces. If the newItemsAllowed mode is enabled with the
setNewItemsAllowed() method, a text box for entering new items will be displayed beside the selec-
tion component. Clicking on the "+" button adds the item to the component.

Figure 4.17. Select Component with Adding New Items Allowed

96

User Interface Components
Twin Column Selection with Twin-

ColSelect

The identifier of an item added by the user will be a String object identical to the caption of the item. You
should take this into account if the item identifier of automatically filled items is some other type or otherwise
not identical to the caption.

Adding new items is possible in both single and multiple selection modes and in all styles. Adding new
items may not be possible if the Select is bound to an external Container that does not allow adding new
items.

4.9.6. Multiple Selection Mode

Setting the Select, NativeSelect, or OptionGroup components to multiple selection mode with the
setMultiSelect() method changes their appearance to allow selecting multiple items. By holding
the Ctrl or Shift key pressed, the user can select multiple items.

See also the behaviour of the component in multiSelect mode with other styles below. With the
twincol style, the selection is done by moving items from a list to a list of selected items. With the
optiongroup style, the items are displayed as check boxes.

myselect.setMultiSelect(true);

In multiple selection mode, the property of a Select object will be an array of currently selected items.

/* Let us add an implementation of the ValueChangeListener interface. */
public class SelectExample extends CustomComponent implements Property.ValueChangeListener
 {
 /* Create a Select object with a caption. */
 Select select = new Select("This is a Select component");

 VerticalLayout layout = new VerticalLayout();
 Label status = new Label("-");

 SelectExample () {
 setCompositionRoot (layout);
 layout.addComponent(select);

 /* Fill the component with some items. */
 final String[] planets = new String[] {"Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};

 for (int i=0; i<planets.length; i++)
 select.addItem(planets[i]);

 /* By default, the change event is not triggered immediately
 * when the selection changes. This enables it. */
 select.setImmediate(true);

 /* Listen for changes in the selection. */
 select.addListener(this);

 layout.addComponent(status);
 }

 /* Respond to change in the selection. */
 public void valueChange(Property.ValueChangeEvent event) {
 /* The event.getProperty() returns the Item ID (IID) of the
 * currently selected item in the component. */
 status.setValue("Currently selected item ID: " + event.getProperty());
 }
}

97

User Interface Components
Multiple Selection Mode

4.10. Table

The Table component is intended for presenting tabular data organized in rows and columns. The Table
is one of the most versatile components in IT Mill Toolkit. Table cells can include text or arbitrary UI
components. You can easily implement editing of the table data, for example clicking on a cell could
change it to a text field for editing.

The data contained in a Table is managed using the Data Model of IT Mill Toolkit (see Chapter 7, Data
Model), through the Container interface of the Table. This makes it possible to bind a table directly to a
data souce such as a database query. Only the visible part of the table is loaded into the browser and
moving the visible window with the scrollbar loads content from the server. While the data is being loaded,
a tooltip will be displayed that shows the current range and total number of items in the table. The rows
of the table are items in the container and the columns are properties. Each table row (item) is identified
with an item identifier (IID), and each column (property) with a property identifier (PID).

When creating a table, you first need to define columns with addContainerProperty(). This
method comes in two flavours. The simpler one takes the property ID of the column and uses it also as the
caption of the column. The more complex one allows differing PID and header for the column. This may
make, for example, internationalization of table headers easier, because if a PID is internationalized, the
internationalization has to be used everywhere where the PID is used. The complex form of the method
also allows defining an icon for the column from a resource. The "default value" parameter is used when
new properties (columns) are added to the table, to fill in the missing values. (This default has no meaning
in the usual case, such as below, where we add items after defining the properties.)

/* Create the table with a caption. */
Table table = new Table("This is my Table");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("First Name", String.class, null);
table.addContainerProperty("Last Name", String.class, null);
table.addContainerProperty("Year", Integer.class, null);

/* Add a few items in the table. */
table.addItem(new Object[] {"Nicolaus","Copernicus",new Integer(1473)}, new Integer(1));
table.addItem(new Object[] {"Tycho", "Brahe", new Integer(1546)}, new Integer(2));
table.addItem(new Object[] {"Giordano","Bruno", new Integer(1548)}, new Integer(3));
table.addItem(new Object[] {"Galileo", "Galilei", new Integer(1564)}, new Integer(4));
table.addItem(new Object[] {"Johannes","Kepler", new Integer(1571)}, new Integer(5));
table.addItem(new Object[] {"Isaac", "Newton", new Integer(1643)}, new Integer(6));

In this example, we used an increasing Integer object as the Item Identifier, given as the second parameter
to addItem(). The actual rows are given simply as object arrays, in the same order in which the properties
were added. The objects must be of the correct class, as defined in the addContainerProperty()
calls.

98

User Interface Components
Table

Figure 4.18. Basic Table Example

Scalability of the Table is largely dictated by the container. The default IndexedContainer is relatively
heavy and can cause scalability problems, for example, when updating the values. Use of an optimized
application-specific container is recommended. Table does not have a limit for the number of items and
is just as fast with hundreds of thousands of items as with just a few. With the current implementation of
scrolling, there is a limit around 500 000 rows, depending on the browser and the pixel height of rows.

4.10.1. Selecting Items in a Table

The Table allows selecting one or more items by clicking them with the mouse. When the user selects an
item, the IID of the item will be set as the property of the table and a ValueChangeEvent is triggered. To
enable selection, you need to set the table selectable. You will also need to set it as immediate in most
cases, as we do below, because without it, the change in the property will not be communicated immediately
to the server.

The following example shows how to enable the selection of items in a Table and how to handle
ValueChangeEvent events that are caused by changes in selection. You need to handle the event with the
valueChange() method of the Property.ValueChangeListener interface.

/* Allow selecting items from the table. */
table.setSelectable(true);

/* When an item is selected, the selection is sent immediately to server. */
table.setImmediate(true);

/* Feedback from selection. */
final Label current = new Label("Selected: -");

/* Handle selection change. */
table.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 current.setValue("Selected: " + table.getValue());
 }
});

99

User Interface Components
Selecting Items in a Table

Figure 4.19. Table Selection Example

If the user clicks on an already selected item, the selection will deselected and the table property will have
null value. You can disable this behaviour by setting setNullSelectionAllowed(false) for
the table.

A table can also be in multiselect mode, where a user can select and unselect any item by clicking on it.
The mode is enabled with the setMultiSelect() method of the Select interface of Table. Selecting
an item triggers a ValueChangeEvent, which will have as its parameter an array of item identifiers.

4.10.2. CSS Style Rules
.i-table {}
 .i-table-header-wrap {}
 .i-table-header {}
 .i-table-header-cell {}
 .i-table-resizer {} /* Column resizer handle. */
 .i-table-caption-container {}
 .i-table-body {}
 .i-table-row-spacer {}
 .i-table-table {}
 .i-table-row {}
 .i-table-cell-content {}

Notice that some of the widths and heights in a table are calculated dynamically and can not be set in CSS.

Setting Individual Cell Styles

The Table.CellStyleGenerator interface allows you to set the CSS style for each individual cell in a table.
You need to implement the getStyle(), which gets the row (item) and column (property) identifiers
as parameters and can return a style name for the cell. The returned style name will be concatenated to
prefix "i-table-cell-content-".

Alternatively, you can use a Table.ColumnGenerator (see Section 4.10.4, “Generated Table Columns”)
to generate the actual UI components of the cells and add style names to them. A cell style generator is
not used for the cells in generated columns.

Table table = new Table("Table with Cell Styles");
table.addStyleName("checkerboard");

// Add some columns in the table. In this example, the property IDs
// of the container are integers so we can determine the column number
// easily.
table.addContainerProperty("0", String.class, null, "", null, null); // Row header
for (int i=0; i<8; i++)
 table.addContainerProperty(""+(i+1), String.class, null,
 String.valueOf((char) (65+i)), null, null);

// Add some items in the table.

100

User Interface Components
CSS Style Rules

table.addItem(new Object[]{"1", "X", "X", "X", "X", "X", "X", "X", "X"}, new Integer(0));
table.addItem(new Object[]{"2", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(1));
for (int i=2; i<6; i++)
 table.addItem(new Object[]{String.valueOf(i+1), "", "", "", "", "", "", "", ""}, new
 Integer(i));
table.addItem(new Object[]{"7", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(6));
table.addItem(new Object[]{"8", "X", "X", "X", "X", "X", "X", "X", "X"}, new Integer(7));
table.setPageLength(8);

// Set cell style generator
table.setCellStyleGenerator(new Table.CellStyleGenerator() {
 public String getStyle(Object itemId, Object propertyId) {
 int row = ((Integer)itemId).intValue();
 int col = Integer.parseInt((String)propertyId);

 // The first column.
 if (col == 0)
 return "rowheader";

 // Other cells.
 if ((row+col)%2 == 0)
 return "black";
 else
 return "white";
 }
});

You can then style the cells, for example, as follows:

/* Center the text in header. */
.i-table-header-cell {
 text-align: center;
}

/* Basic style for all cells. */
.i-table-checkerboard .i-table-cell-content {
 text-align: center;
 vertical-align: middle;
 padding-top: 12px;
 width: 20px;
 height: 28px;
}

/* Style specifically for the row header cells. */
.i-table-cell-content-rowheader {
 background: #E7EDF3 url(../default/table/img/header-bg.png) repeat-x scroll 0 0;
}

/* Style specifically for the "white" cells. */
.i-table-cell-content-white {
 background: white;
 color: black;
}

/* Style specifically for the "black" cells. */
.i-table-cell-content-black {
 background: black;
 color: white;
}

The table will look as shown in the figure below.

101

User Interface Components
CSS Style Rules

Figure 4.20. Cell Style Generator for a Table

4.10.3.Table Features

Page Length and Scrollbar

The default style for Table provides a table with a scrollbar. The scrollbar is located at the right side of
the table and becomes visible when the number of items in the table exceeds the page length, that is, the
number of visible items. You can set the page length with setPageLength().

Setting the page length to zero makes all the rows in a table visible, no matter how many rows there are.
Notice that this also effectively disables buffering, as all the entire table is loaded to the browser at once.
Using such tables to generate reports does not scale up very well, as there is some inevitable overhead in
rendering a table with Ajax. For very large reports, generating HTML directly is a more scalable solution.

Organizing Columns

The default scrollable style supports most of the table features. User can resize the columns by dragging
their borders, change the sorting by clicking on the column headers, collapse the columns if
columnCollapsingAllowed is true, and reorder them if columnReorderingAllowed is
true. You can set the column width of individual columns with setColumnWidth().

Components Inside a Table

The cells of a Table can contain any user interface components, not just strings. If the rows are higher than
the row height defined in the default theme, you have to define the proper row height in a custom theme.

When handling events for components inside a Table, such as for the Button in the example below, you
usually need to know the item the component belongs to. Components do not themselves know about the
table or the specific item in which a component is contained. Therefore, the handling method must use
some other means for finding out the Item ID of the item. There are a few possibilities. Usually the easiest
way is to use the setData() method to attach an arbitrary object to a component. You can subclass the
component and include the identity information there. You can also simply search the entire table for the
item with the component, although that solution may not be so scalable.

The example below includes table rows with a Label in XHTML formatting mode, a multiline TextField,
a CheckBox, and a Button that shows as a link.

102

User Interface Components
Table Features

// Create a table and add a style to allow setting the row height in theme.
final Table table = new Table();
table.addStyleName("components-inside");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("Sum", Label.class, null);
table.addContainerProperty("Is Transferred", CheckBox.class, null);
table.addContainerProperty("Comments", TextField.class, null);
table.addContainerProperty("Details", Button.class, null);

/* Add a few items in the table. */
for (int i=0; i<100; i++) {
 // Create the fields for the current table row
 Label sumField = new Label(String.format("Sum is $%04.2f
<i>(VAT
incl.)</i>",
 new Object[] {new Double(Math.random()*1000)}),
 Label.CONTENT_XHTML);
 CheckBox transferredField = new CheckBox("is transferred");

 // Multiline text field. This required modifying the height of the
 // table row.
 TextField commentsField = new TextField();
 commentsField.setRows(3);

 // The Table item identifier for the row.
 Integer itemId = new Integer(i);

 // Create a button and handle its click. A Button does not know
 // the item it is contained in, so we have to store the item
 // ID as user-defined data.
 Button detailsField = new Button("show details");
 detailsField.setData(itemId);
 detailsField.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Get the item identifier from the user-defined data.
 Integer itemId = (Integer)event.getButton().getData();
 getWindow().showNotification("Link "+itemId.intValue()+" clicked.");
 }
 });
 detailsField.addStyleName("link");

 // Create the table row.
 table.addItem(new Object[] {sumField, transferredField,
 commentsField, detailsField},
 itemId);
}

/* Show just three rows because they are so high. */
table.setPageLength(3);

The row height has to be set higher than the default with a style rule such as the following:

/* Table rows contain three-row TextField components. */
.i-table-components-inside .i-table-cell-content {
 height: 54px;
}

The table will look as shown in the figure below.

103

User Interface Components
Table Features

Figure 4.21. Components in a Table

Editing the Values of a Table

Normally, a Table simply displays the items and their fields as text. If you want to allow the user to edit
the values, you can either put them inside components as we did above, or you can simply call
setEditable(true) and the cells are automatically turned into editable fields.

Let us begin with a regular table with a some columns with usual Java types, namely a Date, Boolean, and
a String.

// Create a table. It is by default not editable.
final Table table = new Table();

// Define the names and data types of columns.
table.addContainerProperty("Date", Date.class, null);
table.addContainerProperty("Work", Boolean.class, null);
table.addContainerProperty("Comments", String.class, null);

// Add a few items in the table.
for (int i=0; i<100; i++) {
 Calendar calendar = new GregorianCalendar(2008,0,1);
 calendar.add(Calendar.DAY_OF_YEAR, i);

 // Create the table row.
 table.addItem(new Object[] {calendar.getTime(),
 new Boolean(false),
 ""},
 new Integer(i)); // Item identifier
}

table.setPageLength(8);
layout.addComponent(table);

You could put the table in editable mode right away if you need to. We'll continue the example by adding
a mechanism to switch the Table from and to the editable mode.

final CheckBox switchEditable = new CheckBox("Editable");
switchEditable.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 table.setEditable(((Boolean)event.getProperty().getValue()).booleanValue());
 }
});
switchEditable.setImmediate(true);
layout.addComponent(switchEditable);

Now, when you check to checkbox, the components in the table turn into editable fields, as shown in Fig-
ure 4.22, “A Table in Normal and Editable Mode” below.

104

User Interface Components
Table Features

Figure 4.22. A Table in Normal and Editable Mode

The field components that allow editing the values of particular types are defined in a field factory that
implements the FieldFactory interface. The default implementation is BaseFieldFactory, which offers
the following crude mappings:

Table 4.4. Type to Field Mappings in BaseFieldFactory

Mapped to Field ClassProperty Type

A DateField.Date

A CheckBox.Boolean

A Form. The fields of the form are automatically created from the item's properties using
the default field factory, that is, BaseFieldFactory. The normal use for this property type
is inside a Form and is less useful inside a Table.

Item

A TextField. The text field manages conversions from the basic types, if possible.others

Field factories are covered with more detail in Section 4.15.2, “Binding Form to Data”. In the default
BaseFieldFactory (you might want to look the source code), the mappings are defined in
createField(Class type, Component uiContext) method, but you can implement any
other of the abstract FieldFactory methods, depending on your needs. You could just implement the
FieldFactory interface, but We recommend that you extend the BaseFieldFactory according to your
needs.

Iterating Over a Table

As the items in a Table are not indexed, iterating over the items has to be done using an iterator. The
getItemIds() method of the Container interface of Table returns a Collection of item identifiers over
which you can iterate using an Iterator. For an example about iterating over a Table, please see Section 7.4,
“Collecting items in Containers”. Notice that you may not modify the Table during iteration, that is, add
or remove items. Changing the data is allowed.

4.10.4. Generated Table Columns

You might want to have a column that has values calculated from other columns. Or you might want to
format table columns in some way, for example if you have columns that display currencies. The
ColumnGenerator interface allows defining custom generators for such columns.

You add new generated columns to a Table with addGeneratedColumn(). It takes the column iden-
tifier as its parameters. Usually you want to have a more user-friendly and possibly internationalized column
header. You can set the header and a possible icon by calling addContainerProperty() before
adding the generated column.

105

User Interface Components
Generated Table Columns

// Define table columns.
table.addContainerProperty("date", Date.class, null, "Date",
null, null);
table.addContainerProperty("quantity", Double.class, null, "Quantity (l)",
null, null);
table.addContainerProperty("price", Double.class, null, "Price (e/l)",
null, null);
table.addContainerProperty("total", Double.class, null, "Total (e)",
null, null);

// Define the generated columns and their generators.
table.addGeneratedColumn("date", new DateColumnGenerator());
table.addGeneratedColumn("quantity", new ValueColumnGenerator("%.2f l"));
table.addGeneratedColumn("price", new PriceColumnGenerator());
table.addGeneratedColumn("total", new ValueColumnGenerator("%.2f e"));

Notice that the addGeneratedColumn() always places the generated columns as the last column,
even if you defined some other order previously. You will have to set the proper order with
setVisibleColumns().

table.setVisibleColumns(new Object[] { "date", "quantity", "price", "total"});

The generators are objects that implement the Table.ColumnGenerator interface and its
generateCell() method. The method gets the identity of the item and column as its parameters, in
addition to the table object. It has to return a component object.

The following example defines a generator for formatting Double valued fields according to a format string
(as in java.util.Formatter).

/** Formats the value in a column containing Double objects. */
class ValueColumnGenerator implements Table.ColumnGenerator {
 String format; /* Format string for the Double values. */

 /** Creates double value column formatter with the given format string. */
 public ValueColumnGenerator(String format) {
 this.format = format;
 }

 /**
 * Generates the cell containing the Double value. The column is
 * irrelevant in this use case.
 */
 public Component generateCell(Table source, Object itemId, Object columnId) {
 Property prop = source.getItem(itemId).getItemProperty(columnId);
 if (prop.getType().equals(Double.class)) {
 Label label = new Label(String.format(format,
 new Object[] { (Double) prop.getValue() }));

 // Set styles for the column: one indicating that it's a value and a more
 // specific one with the column name in it. This assumes that the column
 // name is proper for CSS.
 label.addStyleName("column-type-value");
 label.addStyleName("column-" + (String) columnId);
 return label;
 }
 return null;
 }
}

If you wish to have a custom style for the cells, you have to set it in the generator. A CellStyleGenerator
defined for a table will not be called for the cells of generated columns.

The generator is called for all the visible (or more accurately cached) items in a table. If the user scrolls
the table to another position in the table, the columns of the new visible rows are generated dynamically.

106

User Interface Components
Generated Table Columns

The columns in the visible (cached) rows are also generated always when an item has a value change. It
is therefore usually safe to calculate the value of generated cells from the values of different rows (items).

When you set a table as editable, regular fields will change to editing fields. When the user changes
the values in the fields, the generated columns will be updated automatically. Putting a table with generated
columns in editable mode has a few quirks. The editable mode of Table does not affect generated columns.
You have two alternatives: either you generate the editing fields in the generator or, in case of formatter
generators, remove the generator in the editable mode. The example below uses the latter approach.

// Have a check box that allows the user to make the quantity
// and total columns editable.
final CheckBox editable = new CheckBox("Edit the input values - calculated columns are
regenerated");
editable.setImmediate(true);
editable.addListener(new ClickListener() {
 public void buttonClick(ClickEvent event) {
 table.setEditable(editable.booleanValue());

 // The columns may not be generated when we want to have them
 // editable.
 if (editable.booleanValue()) {
 table.removeGeneratedColumn("quantity");
 table.removeGeneratedColumn("total");
 } else {
 // In non-editable mode we want to show the formatted values.
 table.addGeneratedColumn("quantity", new ValueColumnGenerator("%.2f l"));
 table.addGeneratedColumn("total", new ValueColumnGenerator("%.2f e"));
 }
 // The visible columns are affected by removal and addition of
 // generated columns so we have to redefine them.
 table.setVisibleColumns(
 new Object[] { "date","quantity","price","total","consumption", "dailycost"
 });
 }
});

You will also have to set the editing fields in immediate mode to have the update occur immediately
when an edit field loses the focus. You can set the fields in immediate mode with the a custom Field-
Factory, such as the one given below:

public class ImmediateFieldFactory extends BaseFieldFactory {
 public Field createField(Class type, Component uiContext) {
 // Let the BaseFieldFactory create the fields
 Field field = super.createField(type, uiContext);

 // ...and just set them as immediate
 ((AbstractField)field).setImmediate(true);

 return field;
 }
}
...
table.setFieldFactory(new ImmediateFieldFactory());

If you generate the editing fields with the column generator, you avoid having to use such a field factory,
but of course have to generate the fields for both normal and editable modes.

Figure 4.23, “Table with Generated Columns in Normal and Editable Mode” below shows a table with
columns calculated (blue) and simply formatted (black) with column generators.

107

User Interface Components
Generated Table Columns

Figure 4.23. Table with Generated Columns in Normal and Editable Mode

You can find the complete generated columns example in the Feature Browser demo application in the
installation package, in com.itmill.toolkit.demo.featurebrowser.GeneratedColumnExample.java.

4.11. Tree

The Tree component allows a natural way to represent data that has hierarchical relationships, such as
filesystems or message threads. The Tree component in IT Mill Toolkit works much like the tree components
of most modern desktop user interface toolkits, for example in directory browsing.

The typical use of the Tree component is for displaying a hierachical menu, like a menu on the left side
of the screen, as in Figure 4.24, “A Tree Component as a Menu” below, or for displaying filesystems or
other hierarchical datasets. The menu style makes the appearance of the tree more suitable for this purpose.

final Object[][] planets = new Object[][]{
 new Object[]{"Mercury"},
 new Object[]{"Venus"},
 new Object[]{"Earth", "The Moon"},
 new Object[]{"Mars", "Phobos", "Deimos"},
 new Object[]{"Jupiter", "Io", "Europa", "Ganymedes", "Callisto"},
 new Object[]{"Saturn", "Titan", "Tethys", "Dione", "Rhea", "Iapetus"},
 new Object[]{"Uranus", "Miranda", "Ariel", "Umbriel", "Titania", "Oberon"},
 new Object[]{"Neptune", "Triton", "Proteus", "Nereid", "Larissa"}};

Tree tree = new Tree("The Planets and Major Moons");

/* Add planets as root items in the tree. */
for (int i=0; i<planets.length; i++) {
 String planet = (String) (planets[i][0]);
 tree.addItem(planet);

 if (planets[i].length == 1) {
 /* The planet has no moons so make it a leaf. */

108

User Interface Components
Tree

 tree.setChildrenAllowed(planet, false);
 } else {
 /* Add children (moons) under the planets. */
 for (int j=1; j<planets[i].length; j++) {
 String moon = (String) planets[i][j];

 /* Add the item as a regular item. */
 tree.addItem(moon);

 /* Set it to be a child. */
 tree.setParent(moon, planet);

 /* Make the moons look like leaves. */
 tree.setChildrenAllowed(moon, false);
 }

 /* Expand the subtree. */
 tree.expandItemsRecursively(planet);
 }
}

main.addComponent(tree);

Figure 4.24, “A Tree Component as a Menu” below shows the tree from the code example in a practical
situation.

Figure 4.24. A Tree Component as a Menu

You can read or set the currently selected item by the value property of the Tree component, that is, with
getValue() and setValue(). When the user clicks an item on a tree, the tree will receive an
ValueChangeEvent, which you can catch with a ValueChangeListener. To receive the event immediately
after the click, you need to set the tree as setImmediate(true).

The Tree component uses Container data sources much like the Table component, with the addition that
it also utilizes hierarchy information maintained by a HierarchicalContainer. The contained items can
be of any item type supported by the container. The default container and its addItem() assume that
the items are strings and the string value is used as the item ID.

4.12. MenuBar

The MenuBar component allows creating horizontal dropdown menus, much like the main menu in desktop
applications.

109

User Interface Components
MenuBar

// Create a menu bar
final MenuBar menubar = new MenuBar();
main.addComponent(menubar);

You insert the top-level menu items to a MenuBar object with the addItem() method. It takes a string
label, an icon resource, and a command as its parameters. The icon and command are not required and can
be null.

MenuBar.MenuItem beverages = menubar.addItem("Beverages", null, null);

The command is called when the user clicks the item. A menu command is a class that implements the
MenuBar.Command interface.

// A feedback component
final Label selection = new Label("-");
main.addComponent(selection);

// Define a common menu command for all the menu items.
MenuBar.Command mycommand = new MenuBar.Command() {
 public void menuSelected(MenuItem selectedItem) {
 selection.setValue("Ordered a " + selectedItem.getText() + " from menu.");
 }
};

The addItem() method returns a MenuBar.MenuItem object, which you can use to add sub-menu
items. The MenuItem has an identical addItem() method.

// Put some items in the menu hierarchically
MenuBar.MenuItem beverages = menubar.addItem("Beverages", null, null);
MenuBar.MenuItem hot_beverages = beverages.addItem("Hot", null, null);
hot_beverages.addItem("Tea", null, mycommand);
hot_beverages.addItem("Coffee", null, mycommand);
MenuBar.MenuItem cold_beverages = beverages.addItem("Cold", null, null);
cold_beverages.addItem("Milk", null, mycommand);

// Another top-level item
MenuBar.MenuItem snacks = menubar.addItem("Snacks", null, null);
snacks.addItem("Weisswurst", null, mycommand);
snacks.addItem("Salami", null, mycommand);

// Yet another top-level item
MenuBar.MenuItem services = menubar.addItem("Services", null, null);
services.addItem("Car Service", null, mycommand);

The menu will look as follows:

Figure 4.25. Menu Bar

CSS Style Rules
.i-menubar { }
.gwt-MenuItem {}
.gwt-MenuItem-selected {}

110

User Interface Components
MenuBar

The menu bar has the overall style name .i-menubar. Each menu item has .gwt-MenuItem
style normally and .gwt-MenuItem-selected when the item is selected.

4.13. Embedded

The Embedded component allows displaying embedded media objects, such as images, animations, or
any embeddable media type supported by the browser. The contents of an Embedded component are
managed as resources. For documentation on resources, see Section 3.5, “Referencing Resources”.

The following example displays an image from the same Java package as the class itself using the class
loader.

Embedded image = new Embedded("Yes, logo:", new ClassResource("toolkit-logo.png", this));
main.addComponent(image);

Figure 4.26. Embedded Image

The Embedded component supports several different content types, which are rendered differently in
HTML. You can set the content type with setType(), although for images, as in the above example,
the type is determined automatically.

Table 4.5. Embedded Object Types

The default embedded type, allows embedding certain file types inside
HTML <object> and <embed> elements.

Embedded.TYPE_OBJECT

Embeds an image inside a HTML element.Embedded.TYPE_IMAGE

Embeds a browser frame inside a HTML <iframe> element.Embedded.TYPE_BROWSER

4.13.1. Embedded Objects

The Embedded.TYPE_OBJECT is the default and most generic embedded type, which allows embedding
media objects inside HTML <object> and <embed> elements. You need define the MIME type for
the object type.

Currently, only Shockwave Flash animations are supported (MIME type
application/x-shockwave-flash).

final ClassResource flashResource = new ClassResource("itmill_spin.swf", getApplication());
final Embedded embedded = new Embedded("Embedded Caption", flashResource);
embedded.setType(Embedded.TYPE_OBJECT);
embedded.setMimeType("application/x-shockwave-flash");

You can set object parameters with setParameter(), which takes a parameter's name and value as
strings. The object parameters are included in the HTML as <param> elements.

111

User Interface Components
Embedded

4.13.2. Embedded Images

Images are embedded with the type Embedded.TYPE_IMAGE, although you do not normally need to
set the type explicitly, as it is recognized automatically from the MIME type of the resource, as in the ex-
ample above.

You can find another example of displaying an image from FileResource in Section 4.14, “Upload”. An-
other example, in Section 3.5.5, “Stream Resources”, shows how you can generate the content of an Em-
bedded component dynamically using a StreamResource.

If you have a dynamically generated image, for example with a StreamResource, and the data changes,
you need to reload the image in the browser. Because of how caching is handled in some browsers, you
are best off by renaming the filename of the resource with a unique name, such as one including a timestamp.
You should set cache time to zero with setCacheTime() for the resource object when you create it.

// Create the stream resource with some initial filename.
StreamResource imageResource = new StreamResource(imageSource, "initial-filename.png",
 getApplication());

imageResource.setCacheTime(0);

Embedded embedded = new Embedded("", imageResource);

When refreshing, you also need to call requestRepaint() for the Embedded object.

// This needs to be done, but is not sufficient.
embedded.requestRepaint();

// Generate a filename with a timestamp.
SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHHmmssSSS");
String filename = "myfilename-" + df.format(new Date()) + ".png";

// Replace the filename in the resource.
imageResource.setFilename(makeImageFilename());

You can find more detailed information about the StreamResource in Section 3.5.5, “Stream Resources”.

4.13.3. Browser Frames

The browser frame type allows you to embed external content inside an HTML <iframe> element. You
can refer to a URL with an ExternalResource object. URLs are given with the standard Java URL class.

URL url = new URL("http://dev.itmill.com/");
Embedded browser = new Embedded("", new ExternalResource(url));
browser.setType(Embedded.TYPE_BROWSER);
main.addComponent(browser);

4.14. Upload

The Upload component allows a user to upload files to the server. It displays a file name entry box, a file
selection button, and an upload submit button. The user can either write the filename in the text area or
click the Browse button to select a file. After the file is selected, the user sends the file by pressing the
upload submit button.

// Create the Upload component.
final Upload upload = new Upload("Upload the file here", this);

112

User Interface Components
Embedded Images

Figure 4.27. Upload Component

You can set the text of the upload button with setButtonCaption(), as in the example above, but it
is difficult to change the look of the Browse button. This is a security feature of web browsers. The language
of the Browse button is determined by the browser, so if you wish to have the language of the Upload
component consistent, you will have to use the same language in your application.

upload.setButtonCaption("Upload Now");

The uploaded files are typically stored as files in a file system, in a database, or as temporary objects in
memory. The upload component writes the received data to an java.io.OutputStream so you have plenty
of freedom in how you can process the upload content.

To use the Upload component, you need to define a class that implements the Upload.Receiver interface.
The receiveUpload() method is called when the user clicks the submit button. The method must return
an OutputStream. To do this, it typically creates a File or a memory buffer where the stream is written.
The method gets the file name and MIME type of the file, as reported by the browser.

When an upload is finished, successfully or unsuccessfully, the Upload component will emit the Upload.Fin-
ishedEvent event. To receive it, you need to implement the Upload.FinishedListener interface, and register
the listening object in the Upload component. The event object will also include the file name, MIME
type, and length of the file. Notice that the more specific Upload.FailedEvent and Upload.SucceededEvent
events will be called in the cases where the upload failed or succeeded, respectively.

The following example allows uploading images to /tmp/uploads directory in (UNIX) filesystem (the
directory must exist or the upload fails). The component displays the last uploaded image in an Embedded
component.

import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStream;
import com.itmill.toolkit.terminal.FileResource;
import com.itmill.toolkit.ui.*;

public class MyUploader extends CustomComponent
implements Upload.SucceededListener, Upload.FailedListener, Upload.Receiver {
 Panel root; // Root element for contained components.
 Panel imagePanel; // Panel that contains the uploaded image.
 File file; // File to write to.

 MyUploader() {
 root = new Panel("My Upload Component");
 setCompositionRoot(root);

 // Create the Upload component.
 final Upload upload = new Upload("Upload the file here", this);
 upload.setButtonCaption("Upload Now");

 // Listen for Upload.SucceededEvent and FailedEvent events.
 upload.addListener((Upload.SucceededListener) this);
 upload.addListener((Upload.FailedListener) this);

 root.addComponent(upload);
 root.addComponent(new Label("Click 'Browse' to select a file and then click
'Upload'."));

 // Create a panel for displaying the uploaded file (image).
 imagePanel = new Panel("Uploaded image");
 imagePanel.addComponent(new Label("No image uploaded yet"));

113

User Interface Components
Upload

 root.addComponent(imagePanel);
 }

 // Callback method to begin receiving the upload.
 public OutputStream receiveUpload(String filename, String MIMEType) {
 FileOutputStream fos = null; // Output stream to write to.
 file = new File("/tmp/uploads/" + filename);
 try {
 // Open the file for writing.
 fos = new FileOutputStream(file);
 } catch (final java.io.FileNotFoundException e) {
 // Error while opening the file. Not reported here.
 e.printStackTrace();
 return null;
 }

 return fos; // Return the output stream to write to
 }

 // This is called if the upload is finished.
 public void uploadSucceeded(Upload.SucceededEvent event) {
 // Log the upload on screen.
 root.addComponent(new Label("File " + event.getFilename()
 + " of type '" + event.getMIMEType() + "' uploaded."));

 // Display the uploaded file in the image panel.
 final FileResource imageResource = new FileResource(file, getApplication());
 imagePanel.removeAllComponents();
 imagePanel.addComponent(new Embedded("", imageResource));
 }

 // This is called if the upload fails.
 public void uploadFailed(Upload.FailedEvent event) {
 // Log the failure on screen.
 root.addComponent(new Label("Uploading " + event.getFilename()
 + " of type '" + event.getMIMEType() + "' failed."));
 }
}

The example does not check the type of the uploaded files in any way, which will cause an error if the
content is anything else but an image. The program also assumes that the MIME type of the file is resolved
correctly based on the file name extension. After uploading an image, the component will look as show in
Figure 4.28, “Image Upload Example” below. The browser shows the Browse button localized.

114

User Interface Components
Upload

Figure 4.28. Image Upload Example

4.15. Form

Most web applications need forms. The Form component in IT Mill Toolkit offers an easy way to create
forms where the fields can be automatically generated from a data source that is bound to the form. The
BeanItem adapter allows the data sources to be just JavaBeans or Plain Old Java Objects (POJOs) with
just the setter and getter methods. From manages buffering so that the form contents can be committed to
the data source only when filling the form is complete, and before that, the user can discard any changes.

The Form component is also a layout, with a bounding box, a caption, a description field, and a special
error indicator. As such, it can also be used within logical forms to group input fields.

4.15.1. Form as a User Interface Component

To begin with the Form, it is a UI component with a layout suitable for its purpose. A Form has a caption,
a description, a layout that contains the fields, an error indicator, and a footer, as illustrated in Figure 4.29,
“Layout of the Form Component” below. Unlike with other components, the caption is shown within the
border. (See the details below on how to enable the border with CSS, as it may not be enabled in the default
style.)

Figure 4.29. Layout of the Form Component

115

User Interface Components
Form

Unlike most components, Form does not accept the caption in the constructor, as forms are often captionless,
but you can give the caption with the setCaption(). While the description text, which you can set with
setDescription(), is shown as a tooltip in most other components, a Form displays it in top of the form
box as shown in the figure above.

Form form = new Form();
form.setCaption("Form Caption");
form.setDescription("This is a description of the Form that is " +
 "displayed in the upper part of the form. You normally enter some " +
 "descriptive text about the form and its use here.");

Form has FormLayout as its default layout, but you can set any other layout with setLayout().

The Form is most of all a container for fields so it offers many kinds of automation for creating and man-
aging fields. You can, of course, create fields directly in the layout, but it is usually more desirable to bind
the fields to the connected data source.

// Add a field directly to the layout. This field will not be bound to
// the data source Item of the form.
form.getLayout().addComponent(new TextField("A Field"));

// Add a field and bind it to an named item property.
form.addField("another", new TextField("Another Field"));

Binding forms and their fields to data objects is described further in Section 4.15.2, “Binding Form to
Data” below.

The Form has a special error indicator inside the form. The indicator can show the following types of error
messages:

• Errors set with the setComponentError() method of the form. For example:

form.setComponentError(new UserError("This is the error indicator of the Form."));

• Errors caused by a validator attached to the Form with addValidator().

• Errors caused by validators attached to the fields inside forms, if
setValidationVisible(true) is set for the form. This type of validation is explained
futher in Section 4.15.3, “Validating Form Input” below.

• Errors from automatic validation of fields set as required with setRequired(true) if an
error message has also been set with setRequiredError().

Only a single error is displayed in the error indicator at a time.

Finally, Form has a footer area. The footer is a HorizontalLayout by default, but you can change it with
setFooter().

// Set the footer layout and add some text.
form.setFooter(new VerticalLayout());
form.getFooter().addComponent(new Label("This is the footer area of the Form. "+
 "You can use any layout here. This is nice for
buttons."));

// Add an Ok (commit), Reset (discard), and Cancel buttons for the form.
HorizontalLayout okbar = new HorizontalLayout();
okbar.setHeight("25px");
Button okbutton = new Button("OK", form, "commit");
okbar.addComponent(okbutton);
okbar.setComponentAlignment(okbutton, Alignment.TOP_RIGHT);
okbar.addComponent(new Button("Reset", form, "discard"));

116

User Interface Components
Form as a User Interface Component

okbar.addComponent(new Button("Cancel"));
form.getFooter().addComponent(okbar);

CSS Style Rules

.i-form {}

.i-form fieldset {}

The top-level style name of a Form component is i-form. It is important to notice that the form is imple-
mented as a HTML <fieldset>, which allows placing the caption (or "legend") inside the border. It
would not be so meaningful to set a border for the top-level form element. The following example sets a
border around the form, as is done in Figure 4.29, “Layout of the Form Component” above.

.i-form fieldset {
 border: thin solid;
}

4.15.2. Binding Form to Data

The main purpose of the Form component is that you can bind it to a data source and let the Form generate
and manage fields automatically. The data source can be any class that implements the Item interface,
which is part of the IT Mill Toolkit Data Model, as described in Chapter 7, Data Model. You can either
implement the Item interface yourself, which can be overly complicated, or use the ready BeanItem adapter
to bind the form to any JavaBean object. You can also use PropertysetItem to bind the form to an ad hoc
set of Property objects.

Let us consider the following simple JavaBean with proper setter and getter methods for the member
variables.

/** A simple JavaBean. */
public class PersonBean {
 String name;
 String city;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCity() {
 return city;
 }
}

We can now bind this bean to a Form using the BeanItem adapter as follows.

// Create a form and use FormLayout as its layout.
final Form form = new Form();

// Set form caption and description texts
form.setCaption("Contact Information");
form.setDescription("Please specify name of the person and the city where the person
lives in.");

// Create the custom bean.
PersonBean bean = new PersonBean();

117

User Interface Components
Binding Form to Data

// Create a bean item that is bound to the bean.
BeanItem item = new BeanItem(bean);

// Bind the bean item as the data source for the form.
form.setItemDataSource(item);

The Form uses FormLayout layout by default and automatically generates the fields for each of the bean
properties, as shown in Figure 4.30, “Form Automatically Generated from a Bean” below.

Figure 4.30. Form Automatically Generated from a Bean

The automatically determined order of the fields can be undesirable. To set the order properly, you can
use the setVisibleItemProperties() method of the Form, which takes an ordered collection as
its parameter. Fields that are not listed in the collection are not included in the form.

// Set the order of the items in the form.
Vector order = new Vector();
order.add("city");
order.add("name");
form.setVisibleItemProperties(order);

The form uses the property identifiers as the captions of the fields by default. If you want to have more
proper captions for the fields, which is often the case, you need to use a FieldFactory to create the fields,
as is shown in the section below.

Generating Proper Fields with a FieldFactory

The form generates the fields automatically using very coarse logic. A String, int, or double will result
in a TextField alike, regardless of the meaning of the field. You might want to have a city name to be input
with a combo box, for example. You can create such custom fields by implementing the proper methods
in the FieldFactory interface.

The FieldFactory interface has four different createField() methods for creating the fields, each with a
slightly different set of parameters. Each of the methods is used in different situations; please use debugger
to find which one is used in your case.

The type is the class of the item property: String for both of the bean properties in our example. The
uiContext is reference to UI component that will contain the fields, in this case the Form component.
The propertyId is the identifier of the property, usually a String. In our example, it can be either the
"name" or "city" property of the bean. The item is a reference to the Item implementation instance,
which is in the above example a BeanItem bound to a bean object. The property parameter is a plain
property (object-type pair). You can use these parameters in the logic for creating the proper field object.

The easiest and safest way to make a custom field factory is to extend the default BaseFieldFactory im-
plementation, as we don in the example below:

class MyFieldFactory extends BaseFieldFactory {
 @Override
 public Field createField(Item item, Object propertyId,

118

User Interface Components
Binding Form to Data

 Component uiContext) {

 // Identify the fields by their Property ID.
 String pid = (String) propertyId;
 if (pid.equals("name")) {
 return new TextField("Name");
 } else if (pid.equals("city")) {
 Select select = new Select("City");
 select.addItem("Berlin");
 select.addItem("Helsinki");
 select.addItem("London");
 select.addItem("New York");
 select.addItem("Turku");
 select.setNewItemsAllowed(true);
 return select;
 }

 // Let BaseFieldFactory create other possible fields.
 return super.createField(item, propertyId, uiContext);
 }
}

You set the custom field factory as the field factory of the Form with setFieldFactory():

form.setFieldFactory(new MyFieldFactory());

Our example will now look as shown below:

Figure 4.31. Form Fields Generated with a FieldFactory

4.15.3. Validating Form Input

Validation of the form input is one of the most important tasks in handling forms. The fields in IT Mill
Toolkit can be bound to validators. The validation provides feedback about bad input and the forms can
also manage validation results and accept the input only if all validations are successful. Fields can also
be set as required, which is a special built-in validator. The validators work on the server-side.

Using Validators in Forms

Validators check the validity of input and, if the input is invalid, can provide an error message through an
exception. Validators are classes that implement the Validator interface. The interface has two methods
that you must implement: isValid() that returns the success or failure as a truth value, and

119

User Interface Components
Validating Form Input

validate(), which reports a failure with an exception. The exception can be associated with an error
message describing the details of the error.

// Postal code that must be 5 digits (10000-99999).
TextField field = new TextField("Postal Code");
field.setColumns(5);

// Create the validator
Validator postalCodeValidator = new Validator() {

 // The isValid() method returns simply a boolean value, so
 // it can not return an error message.
 public boolean isValid(Object value) {
 if (value == null || !(value instanceof String)) {
 return false;
 }

 return ((String) value).matches("[0-9]{5}");
 }

 // Upon failure, the validate() method throws an exception with an error message.
 public void validate(Object value) throws InvalidValueException {
 if (!isValid(value)) {
 throw new InvalidValueException("Postal code must be a number 10000-99999.");

 }
 }
};
field.addValidator(postalCodeValidator);

If you are using a custom FieldFactory to generate the fields, you may want to set the validators for fields
there. It is useful to have the form in immediate mode:

// Set the form to act immediately on user input. This is
// necessary for the validation of the fields to occur immediately when
// the input focus changes and not just on commit.
form.setImmediate(true);

Validation is done always when you call the commit() method of the Form.

// The Commit button calls form.commit().
Button commit = new Button("Commit", form, "commit");

If any of the validators in the form fail, the commit will fail and a validation exception message is displayed
in the error indicator of the form. If the commit is successful, the input data is written to the data source.
Notice that commit() also implicitly sets setValidationVisible(true) (if
setValidationVisibleOnCommit() is true, as is the default). This makes the error indicators
visible even if they were previously not visible.

Figure 4.32. Form Validation in Action

120

User Interface Components
Validating Form Input

Required Fields in Forms

Setting a field as required outside a form is usually just a visual clue to the user. Leaving a required
field empty does not display any error indicator in the empty field as a failed validation does. However, if
you set a form field as required with setRequired(true) and give an error message with
setRequiredError() and the user leaves the required field empty, the form will display the error
message in its error indicator.

form.getField("name").setRequired(true);
form.getField("name").setRequiredError("Name is missing");
form.getField("address").setRequired(true); // No error message

To have the validation done immediately when the fields lose focus, you should set the form as immediate,
as was done in the section above.

Figure 4.33. Empty Required Field After Clicking Commit

It is important that you provide the user with feedback from failed validation of required fields either by
setting an error message or by providing the feedback by other means. Otherwise, when a user clicks the
Ok button (commits the form), the button does not appear to work and the form does not indicate any
reason. As an alternative to setting the error message, you can handle the validation error and provide the
feedback about the problem with a different mechanism.

4.15.4. Buffering Form Data

Buffering means keeping the edited data in a buffer and writing it to the data source only when the
commit() method is called for the component. If the user has made changes to a buffer, calling
discard() restores the buffer from the data source. Buffering is actually a feature of all Field components
and Form is a Field. Form manages the buffering of its contained fields so that if commit() or
discard() is called for the Form, it calls the respective method for all of its managed fields.

final Form form = new Form();
...add components...

// Enable buffering.
form.setWriteThrough(false);

// The Ok button calls form.commit().
Button commit = new Button("Ok", form, "commit");

// The Restore button calls form.discard().
Button restore = new Button("Restore", form, "discard");

The Form example in the Feature Browser of IT Mill Toolkit demonstrates buffering in forms. The Widget
caching demo in Additional demos demonstrates buffering in other Field components, its source code is
available in BufferedComponents.java.

121

User Interface Components
Buffering Form Data

4.16. ProgressIndicator

The ProgressIndicator component allows displaying the progress of a task graphically. The progress is
given as a floating-point value between 0.0 and 1.0.

Figure 4.34. The Progress Indicator Component

The progress indicator polls the server for updates for its value. If the value has changed, the progress is
updated. Notice that the user application does not have to handle any polling event, but updating the
component is done automatically.

Creating a progress indicator is just like with any other component. You can give the initial progress value
as a parameter for the constructor. The default polling frequency is 1000 milliseconds (one second), but
you can set some other interval with the setPollingInterval() method.

// Create the indicator
final ProgressIndicator indicator = new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

CSS Style Rules
.i-progressindicator {} /* Base element */
.i-progressindicator div {} /* Progress indication element */

The default style for the progress indicator uses an animated GIF image (img/base.gif) as
the base background for the component. The progress is a <div> element inside the base. When
the progress element grows, it covers more and more of the base background. By default, the
graphic of the progress element is defined in img/progress.png under the default style dir-
e c t o r y . S e e
com.itmill.toolkit.terminal.gwt/public/default/progressindicator/progressindicator.css.

4.16.1. Doing Heavy Computation

The progress indicator is often used to display the progress of a heavy server-side computation task. In the
following example, we create a thread in the server to do some "heavy work". All the thread needs to do
is to set the value of the progress indicator with setValue() and the current progress is displayed
automatically when the browser polls the server.

// Create an indicator that makes you look busy
final ProgressIndicator indicator = new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

// Add a button to start working
final Button button = new Button("Click to start");
main.addComponent(button);

// Another thread to do some work
class WorkThread extends Thread {
 public void run () {
 double current = 0.0;
 while (true) {

122

User Interface Components
ProgressIndicator

 // Do some "heavy work"
 try {
 sleep(50); // Sleep for 50 milliseconds
 } catch (InterruptedException) {}

 // Show that you have made some progress:
 // grow the progress value until it reaches 1.0.
 current += 0.01;
 if (current>1.0)
 indicator.setValue(new Float(1.0));
 else
 indicator.setValue(new Float(current));

 // After all the "work" has been done for a while, take a break.
 if (current > 1.2) {
 // Restore the state to initial.
 indicator.setValue(new Float(0.0));
 button.setVisible(true);
 break;
 }
 }
 }
}

// Clicking the button creates and runs a work thread
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 final WorkThread thread = new WorkThread();
 thread.start();

 // The button hides until the work is done.
 button.setVisible(false);
 }
});

Figure 4.35. Starting Heavy Work

4.17. Custom Composite Components

The ease of making custom user interface components is one of the core features of IT Mill Toolkit. Custom
components can be created at several levels. Typically, you simply combine existing built-in components
to produce composite components. In many applications, such composite components make up the majority
of the user interface. You can also create your own low-level components, for example existing GWT
components. It is also possible to extend the functionality of existing components.

The architecture of user interface components is described in Chapter 4, User Interface Components. For
more information about the overall architecture of IT Mill Toolkit, please see Chapter 2, Architecture. Use
of custom GWT components is covered in Chapter 8, Developing Custom Components.

The easiest way of creating new components is combining existing components. This can be done in two
basic ways: inheritance and management. With inheritance, you inherit some containing class, typically
CustomComponent or some abstract class such as AbstractComponent, AbstractField, or Abstract-
ComponentContainer. With management, you create a class that creates the needed components under
some layout and handles their events. Both of these patterns are used extensively in the examples in
Chapter 4, User Interface Components and elsewhere.

123

User Interface Components
Custom Composite Components

4.17.1. CustomComponent

The CustomComponent class is a simple implementation of the Component interface that provides a
simple way for creating new user interface components by the composition of existing components.

Composition is done by inheriting the CustomComponent class and setting the composite root inside the
component with setCompositionRoot(). The composite root is typically a layout component that
contains multiple components.

4.18. Common Component Features

4.18.1. Sizing Components through Sizeable interface

IT Mill Toolkit components are sizeable; not in the sense that they were fairly large or that the number of
the components and their features are sizeable, but in the sense that you can make them fairly large on the
screen if you like. Or small, or whatever size.

The Sizeable interface, shared by all components, provides a number of manipulation methods and constants
for setting the height and width of a component in absolute or relative units, or for leaving the size undefined.

The size of a component can be set with setWidth() and setHeight() methods. The methods take
the size as a floating-point value. You need to give the unit of the measure as the second parameter for the
above methods. The available units are listed in Table 4.6, “Size Units” below.

mycomponent.setWidth(100, Sizeable.UNITS_PERCENTAGE);
mycomponent.setWidth(400, Sizeable.UNITS_PIXELS);

Alternatively, you can speficy the size as a string. The format of such a string must follow the HTML/CSS
standards for specifying measures.

mycomponent.setWidth("100%");
mycomponent.setHeight("400px");

The "100%" percentage value makes the component take all available size in the particular direction (see
the description of Sizeable.UNITS_PERCENTAGE in the table below). You can also use the shorthand
method setSizeFull() to set the size to 100% in both directions.

The size can be undefined in either or both dimensions, which means that the component will take the
minimum necessary space. Most components have undefined size by default, but some layouts have full
size in horizontal direction. You can set the height or width as undefined with
Sizeable.SIZE_UNDEFINED parameter for setWidth() and setHeight().

You always need to keep in mind that a layout with undefined size may not contain components with defined
relative size, such as "full size". See Section 5.3.1, “Layout Size” for details.

The following table lists the available units and their codes.

124

User Interface Components
CustomComponent

Table 4.6. Size Units

The pixel is the basic hardware-specific measure of one
physical display pixel.

pxSizeable.UNITS_PIXELS

The point is a typographical unit, which is usually defined as
1/72 inches or about 0.35 mm. However, on displays the size
can vary significantly depending on display metrics.

ptSizeable.UNITS_POINTS

The pica is a typographical unit, defined as 12 points, or 1/7
inches or about 4.233 mm. On displays, the size can vary de-
pending on display metrics.

pcSizeable.UNITS_PICAS

A unit relative to the used font, the width of the upper-case
"M" letter.

emSizeable.UNITS_EM

A unit relative to the used font, the height of the lower-case
"x" letter.

exSizeable.UNITS_EX

A physical length unit, millimeters on the surface of a display
device. However, the actual size depends on the display, its
metrics in the operating system, and the browser.

mmSizeable.UNITS_MM

A physical length unit, centimeters on the surface of a display
device. However, the actual size depends on the display, its
metrics in the operating system, and the browser.

cmSizeable.UNITS_CM

A physical length unit, inches on the surface of a display
device. However, the actual size depends on the display, its
metrics in the operating system, and the browser.

inSizeable.UNITS_INCH

A relative percentage of the available size. For example, for
the top-level layout 100% would be the full width or height
of the browser window. The percentage value must be between
0 and 100.

%Sizeable.UNITS_PERCENTAGE

If a component inside HorizontalLayout or VerticalLayout has full size in the namesake direction of the
layout, the component will expand to take all available space not needed by the other components. See
Section 5.3.1, “Layout Size” for details.

125

User Interface Components
Sizing Components through Sizeable

interface

126

Chapter 5. Managing Layout
This chapter gives an overview of layout components, starting with their history, and then gives more
specific description of the components together with some examples.

Layouts are required to place components to specific places in the user interface. You can use plain Java
to accomplish sophisticated component layouting. Another option is to use CustomLayout class and let
the web page designers take responsibility of component layouting using their own set of tools.

Layouts are often strongly coupled with themes that specify various layout attributes such as backgrounds,
borders, alignment, and so on. Themes are detailed in Chapter 6, Themes.

5.1. Background for Layout

Ever since the ancient xeroxians invented graphical user interfaces, programmers have wanted to make
GUI programming ever easier for themselves. Solutions started simple. When GUIs appeared on PC
desktops, practically all screens were of the VGA type and fixed into 640x480 size. Mac or X Window
System on UNIX were not much different. Everyone was so happy with such awesome graphics resolutions
that they never thought that an application would have to work on a radically different screen size. At
worst, screens could only grow, they thought, giving more space for more windows. In the 80s, the idea
of having a computer screen in your pocket was simply not realistic. Hence, the GUI APIs allowed placing
UI components using screen coordinates. Visual Basic and some other systems provided an easy way for
the designer to drag and drop components on a fixed-sized window. One would have thought that at least
translators would have complained about the awkwardness of such a solution, but apparently they were
not, as non-engineers, heard or at least cared about. At best, engineers could throw at them a resource ed-
itor that would allow them to resize the UI components by hand. Such was the spirit back then.

After the web was born, layout design was doomed to change for ever. At first, layout didn't matter much,
as everyone was happy with plain headings, paragraphs, and a few hyperlinks here and there. Designers
of HTML wanted the pages to run on any screen size. The screen size was actually not pixels but rows and
columns of characters, as the baby web was really just hypertext, not graphics. That was soon to be changed.
The first GUI-based browser, NCSA Mosaic, launched a revolution that culminated in Netscape Navigator.
Suddenly, people who had previously been doing advertisement brochures started writing HTML. This
meant that layout design had to be easy not just for programmers, but also allow the graphics designer to
do his or her job without having to know a thing about programming. The W3C committee designing web
standards came up with the CSS (Cascading Style Sheet) specification, which allowed trivial separation
of appearance from content. Later versions of HTML followed, XHTML appeared, as did countless other
standards.

Page description and markup languages are a wonderful solution for static presentations, such as books
and most web pages. Real applications, however, need to have more control. They need to be able to change
the state of user interface components and even their layout on the run. This creates a need to separate the
presentation from content on exactly the right level.

Thanks to the attack of graphics designers, desktop applications were, when it comes to appearance, far
behind web design. Sun Microsystems had come in 1995 with a new programming language, Java, for
writing cross-platform desktop applications. Java's original graphical user interface toolkit, AWT (Abstract
Windowing Toolkit), was designed to work on multiple operating systems as well as embedded in web
browsers. One of the special aspects of AWT was the layout manager, which allowed user interface com-
ponents to be flexible, growing and shrinking as needed. This made it possible for the user to resize the
windows of an application flexibly and also served the needs of localization, as text strings were not limited
to some fixed size in pixels. It became even possible to resize the pixel size of fonts, and the rest of the
layout adapted to the new size.

127

Layout management of IT Mill Toolkit is a direct successor of the web-based concept for separation of
content and appearance and of the Java AWT solution for binding the layout and user interface components
into objects in programs. IT Mill Toolkit layout components allow you to position your UI components
on the screen in a hierarchical fashion, much like in conventional Java UI toolkits such as AWT, Swing,
or SWT. In addition, you can approach the layout from the direction of the web with the CustomLayout
component, which you can use to write your layout as a template in XHTML that provides locations of
any contained components.

The moral of the story is that, because IT Mill Toolkit is intended for web applications, appearance is of
high importance. The solutions have to be the best of both worlds and satisfy artists of both kind: code and
graphics. On the API side, the layout is controlled by UI components, particularly the layout components.
On the visual side, it is controlled by themes. Themes can contain any HTML, CSS, and JavaScript that
you or your web artists create to make people feel good about your software.

5.2. Layout Components

5.2.1. VerticalLayout and HorizontalLayout

VerticalLayout and HorizontalLayout components are containers for laying out components either ver-
tically or horizontally, respectively. Some components, such as Window, have a VerticalLayout as the
root layout, which you can set with setLayout().

Typical use of the layouts goes as follows:

VerticalLayout vertical = new VerticalLayout ();
vertical.addComponent(new TextField("Name"));
vertical.addComponent(new TextField("Street address"));
vertical.addComponent(new TextField("Postal code"));
main.addComponent(vertical);

The text fields have a label attached, which will by default be placed above the field. The layout will look
on screen as follows:

Using HorizontalLayout gives the following layout:

The layouts can have spacing between the horizontal or vertical cells, defined with setSpacing(), as
described in Section 5.3.3, “Layout Cell Spacing”. The contained components can be aligned within their
cells with setComponentAlignment(), as described in Section 5.3.2, “Layout Cell Alignment”.

You can use setWidth() and setHeight() to specify width and height of a component in either
fixed units or relatively with a percentage.

128

Managing Layout
Layout Components

Sizing Contained Components

The components contained within an ordered layout can be laid out in a number of different ways depending
on how you specify their height or width in the primary direction of the layout component.

Figure 5.1. Component Widths in HorizontalLayout

Figure 5.1, “Component Widths in HorizontalLayout” above gives a summary of the sizing options for
a HorizontalLayout. Let us break down the figure as follows.

If a VerticalLayout has undefined height or HorizontalLayout undefined width, the layout will shrink
to fit the contained components so that there is no extra space between them.

HorizontalLayout fittingLayout = new HorizontalLayout();
fittingLayout.setWidth(Sizeable.SIZE_UNDEFINED, 0);
fittingLayout.addComponent(new Button("Small"));
fittingLayout.addComponent(new Button("Medium-sized"));
fittingLayout.addComponent(new Button("Quite a big component"));
parentLayout.addComponent(fittingLayout);

If such a vertical layout continues below the bottom of a window (a Window object), the window will pop
up a vertical scroll bar on the right side of the window area. This way, you get a "web page".

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and there is
space left over from the contained components, the extra space is distributed equally between the component
cells. The components are aligned within these cells according to their alignment setting, top left by default,
as in the example below.

fixedLayout.setWidth("400px");

Using percentual sizes for contained components requires answering the question, "Percentage of what?"
There is no sensible default answer for this question in the current implementation of the layouts, so in
practice, you may not define "100%" size alone.

Often, you want to have one component that takes all the available space left over from other components.
You need to set its size as 100% and set it as expanding with setExpandRatio(). The second parameter
for the method is an expansion ratio, which is relevant if there are more than one expanding component,
but its value is irrelevant for a single expanding component.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

129

Managing Layout
VerticalLayout and HorizontalLayout

// These buttons take the minimum size.
layout.addComponent(new Button("Component"));
layout.addComponent(new Button("Component"));

// This button will expand.
Button expandButton = new Button("Component");

// Use 100% of the expansion cell's width.
expandButton.setWidth("100%");

// The component must be added to layout before setting the ratio.
layout.addComponent(expandButton);

// Set the component's cell to expand.
layout.setExpandRatio(expandButton, 1.0f);

parentLayout.addComponent(layout);

Notice that you must call setExpandRatio() after addComponent(), because the layout can not
operate on an component that it doesn't (yet) include.

Warning: A layout that contains components with percentual size must have a defined size! If a layout
has undefined size and component has, say, 100% size, the component would fill the space given by the
layout, while the layout would shrink to fit the space taken by the component, which is a paradox. This
requirement holds for height and width separately. The debug mode allows detecting such invalid cases;
see Section 9.1.1, “Debug Mode”.

If you specify an expand ratio for multiple components, they will all try to use the available space according
to the ratio.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

// Create three equally expanding components.
String[] captions = { "Small", "Medium-sized", "Quite a big component" };
for (int i = 1; i <= 3; i++) {
 Button button = new Button(captions[i-1]);
 button.setWidth("100%");
 layout.addComponent(button);

 // Have uniform 1:1:1 expand ratio.
 layout.setExpandRatio(button, 1.0f);
}

As we used the same ratio for each components, the ones with more content may be have the content cut.
Below, we use differing ratios:

// Expand ratios for the components are 1:2:3.
layout.setExpandRatio(button, i * 1.0f);

If the size of the expanding components is defined as a percentage (typically "100%"), the ratio is calculated
from the overall space available for the relatively sized components. For example, if you have a 100 pixels
wide layout with two cells with 1.0 and 4.0 respective expansion ratios, and both the components in the

130

Managing Layout
VerticalLayout and HorizontalLayout

layout are set as setWidth("100%"), the cells will have respective widths of 20 and 80 pixels, regardless
of the minimum size of the components.

However, if the size of the contained components is undefined or fixed, the expansion ratio is of the excess
available space. In this case, it is the excess space that expands, not the components.

 for (int i = 1; i <= 3; i++) {
 // Button with undefined size.
 Button button = new Button(captions[i - 1]);

 layout4.addComponent(button);

 // Expand ratios are 1:2:3.
 layout4.setExpandRatio(button, i * 1.0f);
}

It is not meaningful to combine expanding components with percentually defined size and components
with fixed or undefined size. Such combination can lead to a very expected size for the percentually sized
components.

A percentual size of a component defines the size of the component within it's cell. Usually, you use
"100%", but a smaller percentage or a fixed size (smaller than the cell size) will leave an empty space in
the cell and align the component within the cell according to its alignment setting, top left by default.

HorizontalLayout layout50 = new HorizontalLayout();
layout50.setWidth("400px");

String[] captions1 = { "Small 50%", "Medium 50%", "Quite a big 50%" };
for (int i = 1; i <= 3; i++) {
 Button button = new Button(captions1[i-1]);
 button.setWidth("50%");
 layout50.addComponent(button);

 // Expand ratios for the components are 1:2:3.
 layout50.setExpandRatio(button, i * 1.0f);
}
parentLayout.addComponent(layout50);

5.2.2. GridLayout

GridLayout container lays components out on a grid of defined width and height. The columns and rows
of the grid serve as coordinates that are used for laying out components on the grid. Each component can
use multiple cells from the grid, defined as an area (x1,y1,x2,y2), although they typically take up only a
single grid cell.

131

Managing Layout
GridLayout

The grid layout maintains a cursor for adding components in left-to-right, top-to-bottom order. If the
cursor goes past the bottom-right corner, it will automatically extend the grid downwards.

The following example demonstrates the use of GridLayout. The addComponent takes a component
and optional coordinates. The coordinates can be given for a single cell or for an area in x,y (column,row)
order. The coordinate values have a base value of 0. If coordinates are not given, the cursor will be used.

/* Create a 4 by 4 grid layout. */
GridLayout grid = new GridLayout(4, 4);
grid.addStyleName("example-gridlayout");

/* Fill out the first row using the cursor. */
grid.addComponent(new Button("R/C 1"));
for (int i = 0; i < 3; i++) {
 grid.addComponent(new Button("Col " + (grid.getCursorX() + 1)));
}

/* Fill out the first column using coordinates. */
for (int i = 1; i < 4; i++) {
 grid.addComponent(new Button("Row " + i), 0, i);
}

/* Add some components of various shapes. */
grid.addComponent(new Button("3x1 button"), 1, 1, 3, 1);
grid.addComponent(new Label("1x2 cell"), 1, 2, 1, 3);
InlineDateField date = new InlineDateField("A 2x2 date field");
date.setResolution(DateField.RESOLUTION_DAY);
grid.addComponent(date, 2, 2, 3, 3);

The resulting layout will look as follows. The borders have been made visible to illustrate the layout cells.

Figure 5.2. The Grid Layout Component

For a more complete example of grid layout, please see Section 1.2.2, “Calculator”.

A component to be placed on the grid must not overlap with existing components. A conflict causes
throwing a GridLayout.OverlapsException.

Sizing Grid Cells

You can define the size of both a grid layout and its components in either fixed or percentual units, or leave
the size undefined altogether, as described in Section 4.18.1, “Sizing Components through Sizeable inter-
face”. Section 5.3.1, “Layout Size” gives an introduction to sizing of layouts.

132

Managing Layout
GridLayout

The size of the GridLayout component is undefined by default, so it will shrink to fit the size of the
components placed inside it. In most cases, especially if you set a defined size for the layout but do not set
the contained components to full size, there will be some unused space. The position of the non-full com-
ponents within the grid cells will be determined by their alignment. See Section 5.3.2, “Layout Cell
Alignment” for details on how to align the components inside the cells.

The components contained within a GridLayout layout can be laid out in a number of different ways de-
pending on how you specify their height or width. The layout options are similar to HorizontalLayout
and VerticalLayout, as described in Section 5.2.1, “VerticalLayout and HorizontalLayout”.

Warning: A layout that contains components with percentual size must have a defined size! If a layout
has undefined size and component has, say, 100% size, the component would fill the space given by the
layout, while the layout would shrink to fit the space taken by the component, which is a paradox. This
requirement holds for height and width separately. The debug mode allows detecting such invalid cases;
see Section 9.1.1, “Debug Mode”.

Often, you want to have one or more rows or columns that take all the available space left over from non-
expanding rows or columns. You need to set the rows or columns as expanding with
setRowExpandRatio() and setColumnExpandRatio(). The first parameter for these methods
is the index of the row or column to set as expanding. The second parameter for the methods is an expansion
ratio, which is relevant if there are more than one expanding row or column, but its value is irrelevant if
there is only one. With multiple expanding rows or columns, the ratio parameter sets the relative portion
how much a specific row/column will take in relation with the other expanding rows/columns.

GridLayout grid = new GridLayout(3,2);
grid.addStyleName("gridexpandratio");

// Layout containing relatively sized components must have a defined size.
grid.setWidth("600px");
grid.setHeight("200px");

// Add content
grid.addComponent(new Label("Shrinking column
Shrinking row", Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (1:)
Shrinking row",
Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (5:)
Shrinking row",
Label.CONTENT_XHTML));

grid.addComponent(new Label("Shrinking column
Expanding row", Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (1:)
Expanding row",
Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (5:)
Expanding row",
Label.CONTENT_XHTML));

// Set different expansion ratios for the two columns
grid.setColumnExpandRatio(1, 1);
grid.setColumnExpandRatio(2, 5);

// Set the bottom row to expand
grid.setRowExpandRatio(1, 1);

// Align and size the labels.
for (int col=0; col<grid.getColumns(); col++) {
 for (int row=0; row<grid.getRows(); row++) {
 Component c = grid.getComponent(col, row);
 grid.setComponentAlignment(c, Alignment.TOP_CENTER);

 // Make the labels high to illustrate the empty horizontal space.
 if (col != 0 || row != 0) {
 c.setHeight("100%");
 }

133

Managing Layout
GridLayout

 }
}

Figure 5.3. Expanding Rows and Columns in GridLayout

If the size of the contained components is undefined or fixed, the expansion ratio is of the excess space,
as in Figure 5.3, “Expanding Rows and Columns in GridLayout” (excess horizontal space shown in white).
However, if the size of the all the contained components in the expanding rows or columns is defined as
a percentage, the ratio is calculated from the overall space available for the percentually sized components.
For example, if we had a 100 pixels wide grid layout with two columns with 1.0 and 4.0 respective expansion
ratios, and all the components in the grid were set as setWidth("100%"), the columns would have
respective widths of 20 and 80 pixels, regardless of the minimum size of their contained components.

CSS Style Rules

.i-gridlayout {}

.i-gridlayout-margin {}

The i-gridlayout is the root element of the GridLayout component. The i-gridlayout-margin is a simple
element inside it that allows setting a padding between the outer element and the cells.

For styling the individual grid cells, you should style the components inserted in the cells. The implement-
ation structure of the grid can change, so depending on it, as is done in the example below, is not generally
recommended. Normally, if you want to have, for example, a different color for a certain cell, just make
set the component inside it setSizeFull(), and add a style name for it. Sometimes you may need to
use a layout component between a cell and its actual component just for styling.

The following example shows how to make the grid borders visible, as in Figure 5.3, “Expanding Rows
and Columns in GridLayout”.

.i-gridlayout-gridexpandratio {
 background: blue; /* Creates a "border" around the layout grid. */
 margin: 10px; /* Empty space around the layout. */
}

/* Add padding through which the background color of the grid shows. */
.i-gridlayout-gridexpandratio .i-gridlayout-margin {
 padding: 2px;
}

/* Add cell borders and make the cell backgrounds white.
 * Warning: This depends heavily on the HTML structure. */
.i-gridlayout-gridexpandratio > div > div > div {
 padding: 2px; /* Layout's background will show through. */
 background: white; /* The cells will be colored white. */
}

/* Components inside the layout. This is a safe way to style the cells. */

134

Managing Layout
GridLayout

.i-gridlayout-gridexpandratio .i-label {
 text-align: left;
 background: #ffffc0; /* Pale yellow */
}

You should beware of margin, padding, and border settings in CSS as they can mess up the layout.
The dimensions of layouts are calculated in the Client-Side Engine of IT Mill Toolkit and some settings
can interfere with these calculations.

5.2.3. Panel

Panel is a simple container with a frame and an optional caption. The content are has an inner layout
component for laying out the contained components.

The caption can have an icon in addition to the text.

// Create a panel with a caption.
final Panel panel = new Panel("Contact Information");
panel.addStyleName("panelexample");

// The width of a Panel is 100% by default, make it
// shrink to fit the contents.
panel.setWidth(Sizeable.SIZE_UNDEFINED, 0);

// Create a layout inside the panel, and have some margin around it.
final FormLayout form = new FormLayout();
form.setMargin(true);

// Add some components
form.addComponent(new TextField("Name"));
form.addComponent(new TextField("Email"));

// Set the layout as the root layout of the panel
panel.setLayout(form);

The resulting layout will look as follows.

Figure 5.4. A Panel Layout

CSS Style Rules

.i-panel {}

.i-panel-caption {}

.i-panel-nocaption {}

.i-panel-content {}

.i-panel-deco {}

The entire panel has i-panel style. A panel consists of three parts: the caption, content, and bottom
decorations (shadow). These can be styled with i-panel-caption, i-panel-content, and
i-panel-deco, respectively. If the panel has no caption, the caption element will have the style
i-panel-nocaption.

135

Managing Layout
Panel

The light style for the Panel is a predefined style that has now borders or border decorations for the panel.
You enable it simply by adding the light style name for the panel, as is done in the example below.

The light style is typical when using a Panel as the root layout of a window or some similar layout, as in
the example below.

// Have a window with a SplitPanel.
final Window window = new Window("Window with a Light Panel");
window.setWidth("400px");
window.setHeight("200px");
final SplitPanel splitter = new SplitPanel(SplitPanel.ORIENTATION_HORIZONTAL);
window.setLayout(splitter);

// Create a panel with a caption.
final Panel light = new Panel("Light Panel");
light.setSizeFull();

// The "light" style is a predefined style without borders.
light.addStyleName("light");

light.addComponent(new Label("The light Panel has no borders."));
light.getLayout().setMargin(true);

// The Panel will act as a "caption" of the left panel in SplitPanel.
splitter.addComponent(light);
splitter.setSplitPosition(250, Sizeable.UNITS_PIXELS);

main.addWindow(window);

Figure 5.5. A Panel with Light Style

5.2.4. TabSheet

The TabSheet is a multicomponent container that allows switching between the components with "tabs".
The tabs are organized as a tab bar at the top of the tab sheet. Clicking on a tab opens its contained com-
ponent in the main display area of the layout.

New tabs can be added simply with the addComponent() method, but doing so leaves them without a
caption. You can set the caption with setTabCaption() or simply use the addTab() method to
create tabs and give them a caption. In addition to a caption, tabs can contain an icon, which you can define
either in the addtab() call or set later with setTabIcon().

The following example demonstrates the creation of a simple tab sheet, where each the tabs shows a different
Label component. The tabs have an icon, which are loaded as Java class loader resources from the WAR
package of the application.

136

Managing Layout
TabSheet

final TabSheet tabsheet = new TabSheet();
tabsheet.addStyleName("tabsheetexample");

// Make the tabsheet to shrink to fit the contents.
tabsheet.setSizeUndefined();

tabsheet.addTab(new Label("Contents of the first tab"),
 "First Tab",
 new ClassResource("images/Mercury_small.png", this));
tabsheet.addTab(new Label("Contents of the second tab"),
 "Second Tab",
 new ClassResource("images/Venus_small.png", this));
tabsheet.addTab(new Label("Contents of the third tab"),
 "Third tab",
 new ClassResource("images/Earth_small.png", this));

Figure 5.6. A Simple TabSheet Layout

The hideTabs() method allows hiding the tab bar entirely. This can be useful in tabbed document inter-
faces (TDI) when there is only one tab. An individual tab can be made invisible by making its component
invisible with setVisible(false). A tab can be disabled by disabling its component with
setEnabled(false). A tab can be selected programmatically with setSelectedTab().

Clicking on a tab selects it. This fires a TabSheet.SelectedTabChangeEvent, which can be handled with
the TabSheet.SelectedTabChangeListener. The source component of the event, which you can retrieve
with getSource() method of the event, will be the TabSheet component. You can find out the currently
selected component with getSelectedTab().

The example below demonstrates handling TabSheet related events and enabling and disabling tabs. The
sort of logic used in the example is useful in sequential user interfaces, often called wizards, where the
user goes through the tabs one by one, but can return back if needed.

import com.itmill.toolkit.ui.*;
import com.itmill.toolkit.ui.Button.ClickEvent;
import com.itmill.toolkit.ui.TabSheet.SelectedTabChangeEvent;

public class TabSheetExample extends CustomComponent
 implements Button.ClickListener, TabSheet.SelectedTabChangeListener {
 TabSheet tabsheet = new TabSheet();
 Button tab1 = new Button("Push this button");
 Label tab2 = new Label("Contents of Second Tab");
 Label tab3 = new Label("Contents of Third Tab");

 TabSheetExample () {
 setCompositionRoot (tabsheet);

 /* Listen for changes in tab selection. */
 tabsheet.addListener(this);

 /* First tab contains a button, for which we listen button click events. */
 tab1.addListener(this);
 tabsheet.addTab(tab1, "First Tab", null);

 /* A tab that is initially invisible. */
 tab2.setVisible(false);
 tabsheet.addTab(tab2, "Second Tab", null);

137

Managing Layout
TabSheet

 /* A tab that is initially disabled. */
 tab3.setEnabled(false);
 tabsheet.addTab(tab3, "Third tab", null);
 }

 public void buttonClick(ClickEvent event) {
 /* Enable the invisible and disabled tabs. */
 tab2.setVisible(true);
 tab3.setEnabled(true);

 /* Change selection automatically to second tab. */
 tabsheet.setSelectedTab(tab2);
 }

 public void selectedTabChange(SelectedTabChangeEvent event) {
 /* Cast to a TabSheet. This isn't really necessary in this example,
 * as we have only one TabSheet component, but would be useful if
 * there were multiple TabSheets. */
 TabSheet source = (TabSheet) event.getSource();
 if (source == tabsheet) {
 /* If the first tab was selected. */
 if (source.getSelectedTab() == tab1) {
 tab2.setVisible(false);
 tab3.setEnabled(false);
 }
 }
 }
}

Figure 5.7. A TabSheet with Hidden and Disabled Tabs

5.3. Layout Formatting

While the formatting of layouts is mainly done with style sheets, just as with other components, style sheets
are not ideal or even possible to use in some situations. For example, CSS does not allow defining the
spacing of table cells, which is done with the cellspacing attribute in HTML.

Moreover, as many layout sizes are calculated dynamically in the Client-Side Engine of IT Mill Toolkit,
some CSS settings can fail altogether.

5.3.1. Layout Size

The size of a layout component can be specified with the setWidth() and setHeight() methods
defined in the Sizeable interface, just like for any component. It can also be undefined, in which case the
layout shrinks to fit the component(s) inside it. Section 4.18.1, “Sizing Components through Sizeable in-
terface” gives details on the interface.

Figure 5.8. HorizontalLayout with Undefined vs Defined size

138

Managing Layout
Layout Formatting

Many layout components take 100% width by default, while have the height undefined.

The sizes of components inside a layout can also be defined as a percentage of the space available in the
layout, for example with setWidth("100%"); or with the (most commonly used method)
setFullSize() that sets 100% size in both directions. If you use a percentage in a HorizontalLayout,
VerticalLayout, or GridLayout, you will also have to set the component as expanding, as noted below.

Warning: A layout that contains components with percentual size must have a defined size! If a layout
has undefined size and component has, say, 100% size, the component would fill the space given by the
layout, while the layout would shrink to fit the space taken by the component, which is a paradox. This
requirement holds for height and width separately. The debug mode allows detecting such invalid cases;
see Section 9.1.1, “Debug Mode”.

For example:

// This takes 100% width but has undefined height.
VerticalLayout layout = new VerticalLayout();

// A button that takes all the space available in the layout.
Button button = new Button("100%x100% button");
button.setSizeFull();
layout.addComponent(button);

// We must set the layout to a defined height vertically, in this
// case 100% of its parent layout, which also must not have
// undefined size.
layout.setHeight("100%");

The default layout of Window and Panel is VerticalLayout with undefined height. If you insert enough
components in such a layout, it will grow outside the bottom of the view area and scrollbars will appear
in the browser. If you want to have your application to use all the browser view, nothing more or less, you
should use setFullSize() for the root layout.

// Create the main window.
Window main = new Window("Main Window");
setMainWindow(main);

// Use full size.
main.getLayout().setSizeFull();

Expanding Components

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and there is
space left over from the contained components, the extra space is distributed equally between the component
cells. The components are aligned within these cells, according to their alignment setting, top left by default,
as in the example below.

Often, you don't want such empty space, but want to have one or more components to take all the leftover
space. You need to set such a component to 100% size and use setExpandRatio(). If there is just one
such expanding component in the layout, the ratio parameter is irrelevant.

If you set multiple components as expanding, the expand ratio dictates how large proportion of the available
space (overall or excess depending on whether the components are sized as a percentage or not) each
component takes. In the example below, the buttons have 1:2:3 ratio for the expansion.

139

Managing Layout
Layout Size

GridLayout has corresponding method for both of its directions, setRowExpandRatio() and
setColumnExpandRatio().

Expansion is dealt in detail in the documentation of the layout components that support it. See Section 5.2.1,
“VerticalLayout and HorizontalLayout” and Section 5.2.2, “GridLayout” for details on components
with relative sizes.

5.3.2. Layout Cell Alignment

You can set the alignment of the component inside a specific layout cell with the
setComponentAlignment() method. The method takes as its parameters the component contained
in the cell to be formatted, and the horizontal and vertical alignment.

Figure 5.9, “Cell Alignments” below illustrates the alignment of components within a GridLayout.

Figure 5.9. Cell Alignments

The easiest way to set alignments is to use the constants defined in the Alignment class. Let us look how
the buttons in the top row of the above GridLayout are aligned with constants:

// Create a grid layout
final GridLayout grid = new GridLayout(3, 3);

grid.setWidth(400, Sizeable.UNITS_PIXELS);
grid.setHeight(200, Sizeable.UNITS_PIXELS);

Button topleft = new Button("Top Left");
grid.addComponent(topleft, 0, 0);
grid.setComponentAlignment(topleft, Alignment.TOP_LEFT);

Button topcenter = new Button("Top Center");
grid.addComponent(topcenter, 1, 0);
grid.setComponentAlignment(topcenter, Alignment.TOP_CENTER);

Button topright = new Button("Top Right");
grid.addComponent(topright, 2, 0);
grid.setComponentAlignment(topright, Alignment.TOP_RIGHT);
...

The following table lists all the alignment constants by their respective locations:

140

Managing Layout
Layout Cell Alignment

Table 5.1. Alignment Constants

Alignment.TOP_RIGHTAlignment.TOP_CENTERAlignment.TOP_LEFT

Alignment.MIDDLE_RIGHTAlignment.MIDDLE_CENTERAlignment.MIDDLE_LEFT

Alignment.BOTTOM_RIGHTAlignment.BOTTOM_CENTERAlignment.BOTTOM_LEFT

Another way to specify the alignments is to create an Alignment object and specify the horizontal and
vertical alignment with separate constants. You can specify either of the directions, in which case the other
alignment direction is not modified, or both with a bitmask operation between the two directions.

Button middleleft = new Button("Middle Left");
grid.addComponent(middleleft, 0, 1);
grid.setComponentAlignment(middleleft, new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_LEFT));

Button middlecenter = new Button("Middle Center");
grid.addComponent(middlecenter, 1, 1);
grid.setComponentAlignment(middlecenter, new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_HORIZONTAL_CENTER));

Button middleright = new Button("Middle Right");
grid.addComponent(middleright, 2, 1);
grid.setComponentAlignment(middleright, new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_RIGHT));

Obviously, you may combine only one vertical bitmask with one horizontal bitmask, though you may leave
either one out. The following table lists the available alignment bitmask constants:

Table 5.2. Alignment Bitmasks

Bits.ALIGNMENT_LEFTHorizontal

Bits.ALIGNMENT_HORIZONTAL_CENTER

Bits.ALIGNMENT_RIGHT

Bits.ALIGNMENT_TOPVertical

Bits.ALIGNMENT_VERTICAL_CENTER

Bits.ALIGNMENT_BOTTOM

You can determine the current alignment of a component with getComponentAlignment(), which
returns an Alignment object. The class provides a number of getter methods for decoding the alignment,
which you can also get as a bitmask value.

5.3.3. Layout Cell Spacing

The VerticalLayout, HorizontalLayout, and GridLayout layouts offer a setSpacing() method for
enabling space between the cells in the layout. Enabling the spacing adds a spacing style for all cells except
the first.

To enable spacing, simply call setSpacing(true) for the layout as follows:

HorizontalLayout layout2 = new HorizontalLayout();
layout2.addStyleName("spacingexample");
layout2.setSpacing(true);
layout2.addComponent(new Button("Component 1"));
layout2.addComponent(new Button("Component 2"));
layout2.addComponent(new Button("Component 3"));

141

Managing Layout
Layout Cell Spacing

VerticalLayout layout4 = new VerticalLayout();
layout4.addStyleName("spacingexample");
layout4.setSpacing(true);
layout4.addComponent(new Button("Component 1"));
layout4.addComponent(new Button("Component 2"));
layout4.addComponent(new Button("Component 3"));

Enabling the spacing adds spacing style names to all the cells except the first one (on left or top), thereby
allowing setting of amount of spacing between the cells. Spacing can be horizontal (for HorizontalLayout)
or vertical (for VerticalLayout), or both for GridLayout. The name of the spacing style is the base name
of the component style name plus "-spacing-on" for horizontal and vertical spacing, respectively, as
shown in the following table:

Table 5.3. Spacing Style Names

i-orderedlayout-spacing-onVerticalLayout

i-orderedlayout-spacing-onHorizontalLayout

i-gridlayout-spacing-onGridLayout

Below we specify the exact amount of spacing for the code example given above, for the elements with
the "spacingexample" style name:

/* Set horizontal cell spacing in specific layout with "spacingexample" style. */
.i-orderedlayout-spacingexample .i-orderedlayout-spacing-on {
 padding-left: 30px;
}

/* Set vertical cell spacing in specific layout with "spacingexample" style. */
.i-orderedlayout-spacingexample .i-orderedlayout-spacing-on {
 margin-top: 30px;

/* Set vertical and horizontal cell spacing in specific gridlayout with "spacingexample"
 style. */
.i-gridlayout-spacingexample .i-gridlayout-spacing-on {
 margin-top: 30px;
 margin-left: 50px;
}

The resulting layouts will look as shown in Figure 5.10, “Layout Spacings” below, which also shows the
layouts with no spacing.

Figure 5.10. Layout Spacings

Note

Spacing is unrelated to "cell spacing" in HTML tables. While many layout components are imple-
mented with HTML tables in the browser, this implementation is not guaranteed to stay the same
and at least Vertical-/HorizontalLayout could be implemented with <div> elements as well.

142

Managing Layout
Layout Cell Spacing

In fact, as GWT compiles widgets separately for different browsers, the implementation could
even vary between browsers.

5.3.4. Layout Margins

By default, layout components do not have any margin around them. You can add margin with CSS directly
to the layout component. Below we set margins for a specific layout component:

layout1.addStyleName("marginexample1");

.i-orderedlayout-marginexample1 .i-orderedlayout-margin { padding-left: 200px; }

.i-orderedlayout-marginexample1 .i-orderedlayout-margin { padding-right: 100px; }

.i-orderedlayout-marginexample1 .i-orderedlayout-margin { padding-top: 50px; }

.i-orderedlayout-marginexample1 .i-orderedlayout-margin { padding-bottom: 25px; }

In addition to pure CSS method, you can enable margin around the layout with setMargin(true).
The margin element has some default margin widths, but you can adjust the widths in CSS if you need to.

Let us consider the following example, where we enable the margin on all sides of the layout:

 // Create a layout
 HorizontalLayout layout2 = new HorizontalLayout();
 containinglayout.addComponent(new Label("Layout with margin on all sides:"));
 containinglayout.addComponent(layout2);

 // Set style name for the layout to allow styling it
 layout2.addStyleName("marginexample");

 // Have margin on all sides around the layout
 layout2.setMargin(true);

 // Put something inside the layout
 layout2.addComponent(new Label("Cell 1"));
 layout2.addComponent(new Label("Cell 2"));
 layout2.addComponent(new Label("Cell 3"));

You can enable the margins only for specific sides. The margins are specified for the setMargin()
method in clockwise order for top, right, bottom, and left margin. The following would enable the top and
left margins:

 layout2.setMargin(true, false, false, true);

You can specify the actual margin widths in the CSS if you are not satisfied with the default widths:

.i-orderedlayout-marginexample .i-orderedlayout-margin-left {padding-left: 200px;}

.i-orderedlayout-marginexample .i-orderedlayout-margin-right {padding-right: 100px;}

.i-orderedlayout-marginexample .i-orderedlayout-margin-top {padding-top: 50px; }

.i-orderedlayout-marginexample .i-orderedlayout-margin-bottom {padding-bottom: 25px; }

The resulting margins are shown in Figure 5.11, “Layout Margins” below. The two ways produce
identical margins.

143

Managing Layout
Layout Margins

Figure 5.11. Layout Margins

CSS Style Rules

The CSS style names for the margin widths for setMargin() consist of the specific layout
name plus -margin-left and so on. Below, the style rules are given for VerticalLayout:

.i-orderedlayout-margin-left {padding-left: ___px;}

.i-orderedlayout-margin-right {padding-right: ___px;}

.i-orderedlayout-margin-top {padding-top: ___px;}

.i-orderedlayout-margin-bottom {padding-bottom: ___px;}

5.4. Custom Layouts

While it is possible to create almost any typical layout with the standard layout components, it is sometimes
best to separate the layout completely from code. With the CustomLayout component, you can write your
layout as a template in XHTML that provides locations of any contained components. The layout template
is included in a theme. This separation allows the layout to be designed separately from code, for example
using WYSIWYG web designer tools such as Adobe Dreamweaver.

A template is a HTML file located under layouts folder under a theme folder under the
W e b C o n t e n t / I T M I L L / t h e m e s / f o l d e r , f o r e x a m p l e ,
WebContent/ITMILL/themes/themename/layouts/mylayout.html. (Notice that the root
path WebContent/ITMILL/themes/ for themes is fixed.) A template can also be provided dynamically
from an InputStream, as explained below. A template includes <div> elements with a location at-
tribute that defines the location identifier. All custom layout HTML-files must be saved using UTF-8
character encoding.

<table width="100%" height="100%">
 <tr height="100%">
 <td>
 <table align="center">
 <tr>
 <td align="right">User name:</td>
 <td><div location="username"></div></td>
 </tr>
 <tr>
 <td align="right">Password:</td>
 <td><div location="password"></div></td>
 </tr>
 </table>
 </td>

144

Managing Layout
Custom Layouts

 </tr>
 <tr>
 <td align="right" colspan="2"><div location="okbutton"></div></td>
 </tr>
</table>

The client-side engine of IT Mill Toolkit will replace contents of the location elements with the components.
The components are bound to the location elements by the location identifier given to addComponent(),
as shown in the example below.

// Have a Panel where to put the custom layout.
final Panel panel = new Panel("Login");
panel.setSizeUndefined();
main.addComponent(panel);

// Create the custom layout from the "layoutname.html" template.
final CustomLayout custom = new CustomLayout("layoutname");
custom.addStyleName("customlayoutexample");

// Use it as the layout of the Panel.
panel.setLayout(custom);

// Create a few components and bind them to the location tags
// in the custom layout.
TextField username = new TextField();
custom.addComponent(username, "username");

TextField password = new TextField();
custom.addComponent(password, "password");

final Button ok = new Button("Login");
custom.addComponent(ok, "okbutton");

The resulting layout is shown below in Figure 5.12, “Example of a Custom Layout Component”.

Figure 5.12. Example of a Custom Layout Component

You can use addComponent() also to replace an existing component in the location given in the second
parameter.

In addition to a static template file, you can provide a template dynamically with the CustomLayout
constructor that accepts an InputStream as the template source. For example:

new CustomLayout(new ByteArrayInputStream("Template".getBytes()));

or

new CustomLayout(new FileInputStream(file));

145

Managing Layout
Custom Layouts

146

Chapter 6.Themes
This chapter provides details about using and creating themes that control the visual look of web applications
using Cascading Style Sheets (CSS) and other theme resources. We provide an introduction to CSS, espe-
cially concerning the styling of HTML by element classes.

6.1. Overview

IT Mill Toolkit separates the appearance of the user interface from its logic using themes. Themes can include
CSS style sheets, custom HTML layouts, and any necessary graphics used by them. Theme resources can
also be accessed from an application with ThemeResource objects.

You place custom themes under the WebContents/ITMILL/themes/ folder of the web application.
This location is fixed -- the folder "ITMILL" specifies that these are (static) resources specific to IT Mill
Toolkit. The folder should normally contain also the built-in default theme, although you can let it be
loaded dynamically from the Toolkit JAR (even though that is somewhat inefficient). Figure 6.1, “Theme
Contents” illustrates the contents of a theme.

Figure 6.1. Theme Contents

The name of a theme folder defines the name of the theme. The name is used in the setTheme() call.
A theme must contain the styles.css stylesheet, but other contents have free naming. We suggest a
convention for naming the folders as img for images, layouts for custom layouts, and css for additional
stylesheets.

Custom themes must inherit the default theme (unless you just copy the default theme and use it as a template
for efficiency reasons). See the section called “Default Theme” and Section 6.3.3, “Theme Inheritance”
for details on inheriting the default theme.

You use a theme with a simple setTheme() method call for the Application object as follows:

public class MyApplication extends com.itmill.toolkit.Application {
 public void init() {

147

 setTheme("demo");
 ...
 }
}

An application can use different themes for different users and switch between themes during execution.
For smaller changes, a theme can contain alternate styles for user interface components, which can be
changed as needed.

In addition to style sheets, a theme can contain HTML templates for custom layouts used with Custom-
Layout. See Section 5.4, “Custom Layouts” for details.

Resources provided in a theme can also be accessed using the ThemeResource class, as described in
Section 3.5.4, “Theme Resources”. This allows using theme resources, such as images, for example in
Embedded objects and other objects that allow inclusion of images using resources.

6.2. Introduction to Cascading Style Sheets

Cascading Style Sheets or CSS is a technique to separate the appearance of a web page from the content
represented in HTML or XHTML. Let us give a short introduction to Cascading Style Sheets and look
how they are relevant to software development with IT Mill Toolkit.

6.2.1. Basic CSS Rules

A style sheet is a file that contains a set of rules. Each rule consists of one or more selectors, separated
with commas, and a declaration block enclosed in curly braces. A declaration block contains a list of
property statements. Each property has a label and a value, separated with a colon. A property statement
ends with a semicolon.

Let us look at an example:

p, td {
 color: blue;
}

td {
 background: yellow;
 font-weight: bold;
}

In the example above, p and td are element type selectors that match with <p> and <td> elements in
HTML, respectively. The first rule matches with both elements, while the second matches only with <td>
elements. Let us assume that you have saved the above style sheet with the name mystylesheet.css
and consider the following HTML file located in the same folder.

<html>
 <head>
 <link rel="stylesheet" href="mystylesheet.css" type="text/css" />
 </head>
 <body>

<p>This is a paragraph</p>
<p>This is another paragraph</p>

 <table>
 <tr>

<td>This is a table cell</td>
<td>This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

148

Themes
Introduction to Cascading Style Sheets

The <link> element defines the style sheet to use. The HTML elements that match the above rules are
emphasized. When the page is displayed in the browser, it will look as shown in the figure below.

Figure 6.2. Simple Styling by Element Type

CSS has an inheritance mechanism where contained elements inherit the properties of their parent elements.
For example, let us change the above example and define it instead as follows:

table {
 color: blue;
 background: yellow;
}

All elements contained in the <table> element would have the same properties. For example, the text
in the contained <td> elements would be in blue color.

Each HTML element type accepts a certain set of properties. The <div> elements are generic elements
that can be used to create almost any layout and formatting that can be created with a specific HTML element
type. IT Mill Toolkit uses <div> elements extensively, especially for layouts.

Matching elements by their type is, however, rarely if ever used in style sheets for IT Mill Toolkit compon-
ents or Google Web Toolkit widgets.

6.2.2. Matching by Element Class

Matching HTML elements by the class attribute of the elements is the most relevant form of matching
with IT Mill Toolkit. It is also possible to match with the identifier of a HTML element.

The class of an HTML element is defined with the class attribute as follows:

<html>
 <body>

<p class="normal">This is the first paragraph</p>

<p class="another">This is the second paragraph</p>

 <table>
 <tr>

<td class="normal">This is a table cell</td>
<td class="another">This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

The class attributes of HTML elements can be matched in CSS rules with a selector notation where the
class name is written after a period following the element name. This gives us full control of matching
elements by their type and class.

p.normal {color: red;}
p.another {color: blue;}
td.normal {background: pink;}
td.another {background: yellow;}

149

Themes
Matching by Element Class

The page would look as shown below:

Figure 6.3. Matching HTML Element Type and Class

We can also match solely by the class by using the universal selector * for the element name, for example
*.normal. The universal selector can also be left out altogether so that we use just the class name following
the period, for example .normal.

.normal {
 color: red;
}

.another {
 blackground: yellow;
}

In this case, the rule will match with all elements of the same class regardless of the element type. The
result is shown in Figure 6.4, “Matching Only HTML Element Class”. This example illustrates a technique
to make style sheets compatible regardless of the exact HTML element used in drawing a component.

Figure 6.4. Matching Only HTML Element Class

To assure compatibility, we recommend that you use only matching based on the element classes and do
not match for specific HTML element types in CSS rules, because either IT Mill Toolkit or GWT may use
different HTML elements to render some components in the future. For example, IT Mill Toolkit Release
4 used <div> elements extensively for layout components. However, Release 5 uses GWT to render the
components, and GWT uses <table> element to implement most layouts. Similarly, Release 4 used
<div> element also for buttons, but in Release 5 GWT uses the <button> element. IT Mill has little
control over how GWT renders its components, so we can not guarantee compatibility in different versions
of GWT. However, both <div> and <table> as well as <tr> and <td> elements accept most of the
same properties, so matching only the class hierarchy of the elements should be compatible in most cases.

6.2.3. Matching by Descendant Relationship

CSS allows matching HTML by their containment relationship. For example, consider the following HTML
fragment:

<body>
 <p class="mytext">Here is some text inside a div element</p>
 <table class="mytable">
 <tr>
 <td class="mytext">Here is text inside a table and inside a div element.</td>

 </tr>
 </table>
</body>

150

Themes
Matching by Descendant Relationship

Matching by the class name .mytext alone would match both the <p> and <td> elements. If we want
to match only the table cell, we could use the following selector:

.mytable .mytext {color: blue;}

To match, a class listed in a rule does not have to be an immediate descendant of the previous class, but
just a descedant. For example, the selector ".i-panel .i-button" would match all elements with
class .i-button somewhere inside an element with class .i-panel.

Let us give an example with a real case. Consider the following IT Mill Toolkit component.

public class LoginBox extends CustomComponent {
 Panel panel = new Panel("Log In");

 public LoginBox () {
 setCompositionRoot(panel);

 panel.addComponent(new TextField("Username:"));
 panel.addComponent(new TextField("Password:"));
 panel.addComponent(new Button("Login"));
 }
}

The component will look by default as shown in the following figure.

Figure 6.5. Themeing Login Box Example with Default Theme

Now, let us look at the HTML structure of the component. The following listing assumes that the application
contains only the above component in the main window of the application.

 <body>
 <div id="itmtk-ajax-window">
 <div>
 <div class="i-orderedlayout">
 <div>
 <div class="i-panel">
 <div class="i-panel-caption">Log In</div>
 <div class="i-panel-content">
 <div class="i-orderedlayout">
 <div>
 <div>
 <div class="i-caption">Username:</div>
 </div>
 <input type="text" class="i-textfield"/>
 </div>
 <div>
 <div>
 <div class="i-caption">Password:</div>
 </div>
 <input type="password" class="i-textfield"/>
 </div>
 <div><button type="button" class="i-button">Login</button></div>

151

Themes
Matching by Descendant Relationship

 </div>
 </div>
 <div class="i-panel-deco"/>
 </div>
 </div>
 </div>
 </div>
 </div>
 </body>

Now, consider the following theme where we set the backgrounds of various elements.

.i-panel .i-panel-caption {
 background: #80ff80; /* pale green */
}

.i-panel .i-panel-content {
 background: yellow;
}

.i-panel .i-textfield {
 background: #e0e0ff; /* pale blue */
}

.i-panel .i-button {
 background: pink;
}

The coloring has changed as shown in the following figure.

Figure 6.6. Themeing Login Box Example with Custom Theme

An element can have multiple classes separated with a space. With multiple classes, a CSS rule matches
an element if any of the classes match. This feature is used in many IT Mill Toolkit components to allow
matching based on the state of the component. For example, when the mouse is over a Link component,
over class is added to the component. Most of such styling is a feature of Google Web Toolkit.

6.2.4. Notes on Compatibility

CSS was first proposed in 1994. The specification of CSS is maintained by the CSS Working Group of
World Wide Web Consortium (W3C). Its versions are specified as levels that build upon the earlier version.
CSS Level 1 was published in 1996, Level 2 in 1998. Development of CSS Level 3 was started in 1998
and is still under way.

While the support for CSS has been universal in all graphical web browsers since at least 1995, the support
has been very incomplete at times and there still exists an unfortunate number of incompatibilities between
browsers. While we have tried to take these incompatibilities into account in the default themes in IT Mill
Toolkit, you need to consider them while developing custom themes.

152

Themes
Notes on Compatibility

Compatibility issues are detailed in various CSS handbooks.

6.3. Creating and Using Themes

Custom themes are placed in ITMILL/themes folder of the web application (in the WebContent dir-
ectory) as illustrated in Figure 6.1, “Theme Contents”. This location is fixed. You need to have a theme
folder for each theme you use in your application, although applications rarely need more than a single
theme. For example, if you want to define a theme with the name mytheme, you will place it in folder
ITMILL/themes/mytheme.

A custom theme must also inherit the default theme, as shown in the example below:

@import "../default/styles.css";

body {
 background: yellow;
}

See the section called “Default Theme” and Section 6.3.3, “Theme Inheritance” below for details on inher-
iting the default theme and theme inheritance generally.

6.3.1. Styling Standard Components

Each user interface component in IT Mill Toolkit has a set of style classes that you can use to control the
appearance of the component. Some components have additional elements that also allow styling.

The following table lists the style classes of all client-side components of IT Mill Toolkit. Notice that a
single server-side component can have multiple client-side implementations. For example, a Button can
be rendered on the client side either as a regular button or a check box, depending on the switchMode
attribute of the button. For details regarding the mapping to client-side components, see Section 8.4, “De-
fining a Widget Set”. Each client-side component type has its own style class and a number of additional
classes that depend on the client-side state of the component. For example, a text field will have
i-textfield-focus class when mouse pointer hovers over the component. This state is purely on
the client-side and is not passed to the server.

Some client-side components can be shared by different server-side components. There is also the IUn-
knownComponent, which is a component that indicates an internal error in a situation where the server
asked to render a component which is not available on the client-side.

153

Themes
Creating and Using Themes

Table 6.1. Default CSS Style Names of IT Mill Toolkit Components

State Indicat-
ors

CSS Class NameClient-Side WidgetServer-Side Com-
ponent

i-buttonIButtonButton

ICheckBox

i-customcomponentICustomComponentCustomComponent

ICustomLayoutCustomLayout

i-datefieldIDateFieldDateField

i-datefield-entrycalendarICalendar

i-datefield-calendarIDateFieldCalendar

i-datefield-calendarIPopupCalendar

i-readonly, i-
textfield-error

ITextualDate

-IEmbeddedEmbedded

i-formIFormForm

-IFormLayoutFormLayout

-IGridLayoutGridLayout

i-labelILabelLabel

readonly, en-
abled

i-linkILinkLink

i-select-optiongroupIOptionGroupOptionGroup

i-orderedlayoutIOrderedLayoutHorizontalLayout

i-orderedlay-
out

IOrderedLayoutVerticalLayout

i-panel
(i-panel-

IPanelPanel

caption,
i-panel-
content,
i-panel-
deco)

Select

i-listselectIListSelect

i-filterselectIFilterSelect

i-sliderISliderSlider

-ISplitPanelSplitPanel

-ISplitPanelHorizontal

-ISplitPanelVertical

i-tableIScrollTableTable

i-table (i-table-tbody)ITablePaging

i-tabsheet (i-tabsheet-content, i-
tablsheet-tabs)

ITabSheetTabSheet

154

Themes
Styling Standard Components

State Indicat-
ors

CSS Class NameClient-Side WidgetServer-Side Com-
ponent

i-textfield-fo-
cus

i-textfieldITextFieldTextField

ITextArea

IPasswordField

i-tree (i-tree-node-selected)ITreeTree

i-select-twincol (i-select-twincol-
selections, i-select-twincol-but-
tons, i-select-twincol-deco)

ITwinColSelectTwinColSelect

-IUploadUpload

i-windowIWindowWindow

-CalendarEntry-

i-datefield-calendarpanelCalendarPanel-

i-contextmenuContextMenu-

itmtk-unknown (itmtk-unknown-
caption)

IUnknownComponent-

-IView-

gwt-MenuBarMenubar-

gwt-MenuItemMenuItem-

i-datefield-time (i-select)Time-

Style names of sub-components are shown in parentheses.

Default Theme

The default theme is provided in the ITMILL/themes/default/styles.css stylesheet in the IT
Mill Toolkit library JAR. This stylesheet is a compilation of the separate stylesheets for each component
in the corresponding subdirectory.

Notice that the default theme included in the IT Mill Toolkit library JAR is served dynamically from the
JAR by the servlet. Serving the theme statically by the web server is much more efficient. You only need
to extract the ITMILL/ directory from the JAR under your WebContent directory. Just make sure to
update it if you upgrade to a newer version of IT Mill Toolkit.

Creation of a default theme of custom GWT widgets is detailed in Section 8.2.3, “Styling GWT Widgets”.

6.3.2. Using Themes

Using a theme is simple, you only need to set the theme with setTheme().

Defining the appearance of a user interface component is fairly simple. First, you create a component and
add a custom style name for it with addStyleName(). Then you write the CSS element that defines
the formatting for the component.

155

Themes
Using Themes

6.3.3.Theme Inheritance

When you define your own theme, you will need to inherit the default theme (unless you just copy the
default theme).

Inheritance in CSS is done with the @import statement. In the typical case where you define your own
theme, you inherit the default theme as follows:

@import "../default/styles.css";

body {
 background: yellow;
}

You can even create a deep hierarchy of themes by inheritance. Such a solution is often useful if you have
some overall theme for your application and a slightly modified theme for different user classes. You can
even make it possible for each user to have his or her own theme.

For example, let us assume that we have the base theme of an application with the name myapp and a
specific myapp-student theme for users with the student role. The stylesheet of the base theme would be
located in themes/myapp/styles.css. We can then "inherit" it in
themes/myapp-student/styles.css with a simple @import statement:

@import "../myapp/styles.css";

body {
 background: green;
}

This would make the page look just as with the base theme, except for the green background. You could
use the theme inheritance as follows:

public class MyApplication extends com.itmill.toolkit.Application {

 public void init() {
 setTheme("myapp");
 ...
 }

 public void login(User user) {
 if (user.role == User.ROLE_STUDENT)
 setTheme("myapp-student");
 ...
 }

 public void logout() {
 setTheme("myapp");
 ...
 }
}

156

Themes
Theme Inheritance

Chapter 7. Data Model
7.1. Overview

IT Mill Toolkit Data Model is one of the core concepts of the library. Let us revisit the model-view-con-
troller design pattern. The model consists of application data and business logic, which acts on the data.
The user interface generates events, which are processed by the controller, which controls the user interface
and the data. To allow the view (user interface components) to access the application data directly, without
need to annoy the controller with every mundane change, we need a standard data interface. Application
data needs a common interface so that the data can be accessed by the view and the controller alike. In the
Toolkit, we have solved this with the Data Model.

Figure 7.1. IT Mill Toolkit Data Model

At the heart of Data Model is the property that consists of a value and its data type. A property is always
typed and the type can be any object type in Java. Properties are in themselves unnamed objects. Properties
are collected in an item, which associates the properties with names, the Property Identifiers or PIDs. Items
can be contained in containers and are identified with Item Identifiers or IIDs.

The Data Model is realized as a set of interface classes in the fittingly named package com.it-
mill.toolkit.data. The package contains interfaces Property, Item, and Container, along with a number
of more specialized interfaces and classes.

Notice that the Data Model does not define data representation, but only interfaces. This leaves the repres-
entation fully to the implementation of the containers. The representation can be almost anything, such as
a Java object structure, a filesystem, or a database query.

The Data Model is used heavily in UI components of the Toolkit. A key feature of all UI components is
that they can either maintain their data by themselves or be bound to an external data source. For example,
many UI components, such as Button, Label, or TextField have a single property which they control.

157

You can access this property through the Property interface inherited by the components. By default, the
property is contained within the component, but you can bind the the components to external data sources
with the setPropertyDataSource() method of the com.itmill.toolkit.ui.AbstractField class inherited
by such components.

Many UI components are actually both containers and properties. This is especially true for selectable
components (that implement Select), because they are containers that contain selectable items. Their
property is the currently selected item. For more details on components, see Chapter 4, User Interface
Components.

By implementing a container interface, you can bind UI components directly to data. As containers can
be unordered, ordered, indexed, or hierarchical, they can interface practically any kind of data representation.
The Toolkit includes data connectors for some common data sources, such as the filesystem.

The Data Model has several important features, such as support for change notification, transactions, val-
idation, and lazy loading. These features are discussed in detail below.

7.2. Properties

IT Mill Toolkit data model is one of the core concepts in the library and Property-interface is the base of
that model. Property provides standardized API for a single data object that can be read (get) and written
(set). A property is always typed, but can optionally support data type conversions. Optionally properties
can provide value change events for following the state changes.

The most important function of the Property as well as other data models is to connect classes implementing
the interface directly to editor and viewer classes. Typically this is used to connect different data sources
to UI components for editing and viewing their contents.

Properties can be utilized either by implementing the interface or by using some of the existing property
implementations. IT Mill Toolkit includes Property interface implementations for arbitrary function pairs
or Bean-properties as well as simple object properties.

Many of the UI components also implement Property interface and allow setting of other components as
their data-source. These UI-components include TextField, DateField, Select, Table, Button, Label and
Tree.

7.3. Holding properties in Items

Item is an object that contains a set of named properties. Each property is identified by a property identifier
(PID) and a reference to the property can be queried from the Item. Item defines inner interfaces for
maintaining the item property set and listening changes in the item property set.

Items generally represent objects in the object-oriented model, but with the exception that they are config-
urable and provide an event mechanism. The simplest way of utilizing Item interface is to use existing
Item implementations. Provided utility classes include a configurable property set, a bean-to-item adapter
and a Form UI component.

7.4. Collecting items in Containers

Container is the most advanced of the data model supported by IT Mill Toolkit. It provides a very flexible
way of managing a set of items that share common properties. Each item is identified by an item id.
Properties can be requested from container with item and property ids. Another way of accessing properties
is to first request an item from container and then request its properties from it.

158

Data Model
Properties

Container interface was designed with flexibility and efficiency in mind. It contains inner interfaces for
ordering the items sequentially, indexing the items and accessing them hierarchically. Those ordering
models provide the basis for the Table, Tree, and Select UI components. As with other data models, the
containers support events for notifying about the changes.

A set of utilities for converting between container models by adding external indexing or hierarchy into
existing containers. In memory containers implementing indexed and hierarchical models provide easy to
use tools for setting up in memory data storages. There is even a hierarchical container for direct file system
access.

As the items in a Container are not indexed, iterating over the items has to be done using an Iterator. The
getItemIds() method of Container returns a Collection of item identifiers over which you can iterate.
The following example demonstrates a typical case where you iterate over the values of check boxes in a
column of a Table component. The context of the example is the example used in Section 4.10, “Table”.

/* Collect the results of the iteration into this string. */
String items = "";

/* Iterate over the item identifiers of the table. */
for (Iterator i = table.getItemIds().iterator(); i.hasNext();) {
 /* Get the current item identifier, which is an integer. */
 int iid = (Integer) i.next();

 /* Now get the actual item from the table. */
 Item item = table.getItem(iid);

 /* And now we can get to the actual checkbox object. */
 Button button = (Button) (item.getItemProperty("ismember").getValue());

 /* If the checkbox is selected. */
 if ((Boolean)button.getValue() == true) {
 /* Do something with the selected item; collect the first names in a string. */
 items += item.getItemProperty("First Name").getValue() + " ";
 }
}

/* Do something with the results; display the selected items. */
layout.addComponent (new Label("Selected items: " + items));

Notice that the getItemIds() returns an unmodifiable collection, so the Container may not be modified
during iteration. You can not, for example, remove items from the Container during iteration. The modi-
fication includes modification in another thread. If the Container is modified during iteration, a Concur-
rentModificationException is thrown and the iterator may be left in an undefined state.

159

Data Model
Collecting items in Containers

160

Chapter 8. Developing Custom
Components

This chapter gives details on how to create custom client-side components as Google Web Toolkit (GWT)
widgets and how to integrate them with IT Mill Toolkit. The client-side implementations of all standard
user interface components in IT Mill Toolkit use the same client-side interfaces and patterns.

Google Web Toolkit is intended for developing browser-based user interfaces using the Java language,
which is compiled into JavaScript. Knowledge of such client-side technologies is usually not needed with
IT Mill Toolkit, as its repertoire of user interface components should be sufficient for most applications.
The easiest way to create custom components in IT Mill Toolkit is to make composite components with
the CustomComponent class. See Section 4.17, “Custom Composite Components” for more details on
the composite components. In some cases, however, you may need to either make modifications to existing
components or create new or integrate existing GWT widgets with your application.

If you need more background on the architecture, Section 2.3, “Client-Side Engine” gives an introduction
to the architecture of the IT Mill Toolkit Client-Side Engine. If you are new to Google Web Toolkit, Sec-
tion 2.2.2, “Google Web Toolkit” gives an introduction to GWT and its role in the architecture of IT Mill
Toolkit.

On Terminology

Google Web Toolkit uses the term widget for user interface components. In this book, we use the
term widget to refer to client-side components made with Google Web Toolkit, while using the
term component in a general sense and also in the special sense for server-side components.

8.1. Overview

Google Web Toolkit (GWT) is an integral part of IT Mill Toolkit since Release 5. All rendering of user
interface components in a web browser is programmed with GWT. Using custom GWT widgets is easy
in IT Mill Toolkit. This chapter gives an introduction to GWT widgets and details on how to integrate
them with IT Mill Toolkit.

On the client side, in the web browser, you have the IT Mill Toolkit Client-Side Engine. It uses the GWT
framework, and both are compiled into a JavaScript runtime component. The client-side engine is contained
in the com.itmill.toolkit.terminal.gwt.client package and the client-side implementations of various user
interface components are in the com.itmill.toolkit.terminal.gwt.client.ui package. You can find the source
code for these packages in the IT Mill Toolkit installation package. You make custom components by in-
heriting GWT widget classes. To integrate them with IT Mill Toolkit, you have to implement the Paintable
interface of the Client-Side Engine that provides the AJAX communications with the server-side application.
To enable the custom widgets, you also need to implement a widget set. A widget set is a factory class that
can instantiate your widgets. It needs to inherit the DefaultWidgetSet that acts as the factory for the
standard widgets. You can also define stylesheets for custom widgets. A client-side module is defined in
a GWT Module Descriptor.

To summarize, to implement a client-side widget that is integrated with IT Mill Toolkit, you need the fol-
lowing:

• A GWT widget that implements the Paintable interface of the IT Mill Toolkit Client-Side Engine

• A widget factory (a "widget set") that can create the custom widget or widgets

161

• Default CSS style sheet for the widget set (optional)

• A GWT Module Descriptor (.gwt.xml) that describes the entry point and style sheet

On the server side, you need to implement a server-side component that manages serialialization and
deserialization of its attributes with the client-side widget. A server-side component usually inherits the
AbstractComponent or AbstractField class and implements either the paintContent() or the more
generic paint() method to serialize its data to the client. These methods "paint" the component by
generating a UIDL element that is sent to the client. The UIDL element contains all the relevant information
about the component, and you can easily add your own attributes to it.

Figure 8.1, “Color Picker Module” below illustrates the folder hierarchy of the Color Picker example used
in this chapter. The example is available in the demo application of IT Mill Toolkit with URL
/colorpicker/. You can find the full source code of the application in the source module for the demos
in the installation package.

Figure 8.1. Color Picker Module

The ColorPickerApplication.java application provides an example of using the ColorPicker
custom component. To allow accessing the application, it must be defined in the deployment descriptor
web.xml. See Section 3.7.3, “Deployment Descriptor web.xml” for details. The source code for the
server-side component is located in the same folder.

A client-side widget set must be developed within a single source module tree. This is because GWT
Compiler takes as its argument the root folder of the source code, in the Color Picker example the
colorpicker.gwt.client module, and compiles all the contained Java source files into JavaScript.
The path to the source files, the entry point class, and the style sheet are specified in the
WidgetSet.gwt.xml descriptor for the GWT Compiler. The WidgetSet.java provides source
code for the entry point, which is a factory class for creating the custom widget objects. The actual custom
widget is split into two classes: GwtColorPicker, a pure GWT widget, and IColorPicker that provides

162

Developing Custom Components
Overview

the integration with IT Mill Toolkit. The default style sheet for the widget set is provided in
gwt/public/colorpicker/styles.css.

8.2. Google Web Toolkit Widgets

Let us take a look into how custom GWT widgets are created. The authoritative sources for developing
with GWT are the Google Web Toolkit Developer Guide and Google Web Toolkit Class Reference.

Google Web Toolkit offers a variety of ways for creating custom widgets. The easiest way is to create
composite widgets by grouping existing basic widgets and adding some interaction logic to them. You can
also develop widgets using the lower-level Java interfaces used by the standard GWT widgets or the really
low-level JavaScript interfaces.

A custom GWT widget needs to find its place in the GWT class hierarchy. Figure 8.2, “GWT Widget Base
Class Hierarchy” below illustrates the abstract base classes for GWT widgets.

Figure 8.2. GWT Widget Base Class Hierarchy

Each of the base classes offers various services for different types of widgets. Many custom widgets, such
as the Color Picker example below, extend the Composite class to combine the widget from existing GWT
widgets. Other base classes offer various features useful for different kinds of widgets. You can also opt
to extend an existing GWT widget, as we have done for most of the standard user interface components
of IT Mill Toolkit, or extend an IT Mill Toolkit widget.

8.2.1. Extending an IT Mill Toolkit Widget

Extending an IT Mill Toolkit widget is an easy way to add features, such as advanced client-side validation,
to existing standard components. If the extended widget does not require any additional parameters, which
is usual in client-side validation, you may not even need to define a server-side counterpart for your widget.
A server-side component can be mapped to multiple client-side components depending on its parameters.
The mapping is defined in the widget factory, i.e., the class inheriting DefaultWidgetSet. For details on
how to implement a widget factory, see Section 8.4, “Defining a Widget Set”.

8.2.2. Example: A Color Picker GWT Widget

In the following example, we implement a composite GWT widget built from HorizontalPanel, Grid,
Button, and Label widgets. This widget does not yet have any integration with the server side code, which

163

Developing Custom Components
Google Web Toolkit Widgets

will be shown later in this chapter. The source code is available in the source folder for the demo application
in IT Mill Toolkit installation folder, under package com.itmill.toolkit.demo.colorpicker.

package com.itmill.toolkit.demo.colorpicker.gwt.client.ui;

import com.google.gwt.user.client.DOM;
import com.google.gwt.user.client.Element;
import com.google.gwt.user.client.ui.*;

/**
 * A regular GWT component without integration with IT Mill Toolkit.
 **/
public class GwtColorPicker extends Composite implements ClickListener {

 /** Currently selected color name to give client-side feedback to the user. */
 protected Label currentcolor = new Label();

 public GwtColorPicker() {
 // Create a 4x4 grid of buttons with names for 16 colors
 Grid grid = new Grid(4,4);
 String[] colors = new String[] {"aqua", "black", "blue", "fuchsia",
 "gray", "green", "lime", "maroon", "navy", "olive",
 "purple", "red", "silver", "teal", "white", "yellow"};
 int colornum = 0;
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++, colornum++) {
 // Create a button for each color
 Button button = new Button(colors[colornum]);
 button.addClickListener(this);

 // Put the button in the Grid layout
 grid.setWidget(i, j, button);

 // Set the button background colors.
 DOM.setStyleAttribute(button.getElement(), "background", colors[colornum]);

 // For dark colors, the button label must be in white.
 if ("black navy maroon blue purple".indexOf(colors[colornum]) != -1)
 DOM.setStyleAttribute(button.getElement(), "color", "white");
 }

 // Create a panel with the color grid and currently selected color indicator
 HorizontalPanel panel = new HorizontalPanel();
 panel.add(grid);
 panel.add(currentcolor);

 // Set the class of the color selection feedback box to allow CSS styling.
 // We need to obtain the DOM element for the current color label.
 // This assumes that the <td> element of the HorizontalPanel is
 // the parent of the label element. Notice that the element has no parent
 // before the widget has been added to the horizontal panel.
 Element panelcell = DOM.getParent(currentcolor.getElement());
 DOM.setElementProperty(panelcell, "className", "colorpicker-currentcolorbox");

 // Set initial color. This will be overridden with the value read from server.
 setColor("white");

 // Composite GWT widgets must call initWidget().
 initWidget(panel);
 }

 /** Handles click on a color button. */
 public void onClick(Widget sender) {
 // Use the button label as the color name to set
 setColor(((Button) sender).getText());
 }

164

Developing Custom Components
Example: A Color Picker GWT Widget

 /** Sets the currently selected color. */
 public void setColor(String newcolor) {
 // Give client-side feedback by changing the color name in the label
 currentcolor.setText(newcolor);

 // Obtain the DOM elements. This assumes that the <td> element
 // of the HorizontalPanel is the parent of the label element.
 Element nameelement = currentcolor.getElement();
 Element cell = DOM.getParent(nameelement);

 // Give feedback by changing the background color
 DOM.setStyleAttribute(cell, "background", newcolor);
 DOM.setStyleAttribute(nameelement, "background", newcolor);
 if ("black navy maroon blue purple".indexOf(newcolor) != -1)
 DOM.setStyleAttribute(nameelement, "color", "white");
 else
 DOM.setStyleAttribute(nameelement, "color", "black");
 }
}

This example demonstrates one reason for making a custom widget: it provides client-side feedback to the
user in a way that would not be possible or at least practical from server-side code. Server-side code can
only select a static CSS style or a theme, while on the client-side we can manipulate styles of HTML ele-
ments very flexibly. Notice that manipulation of the DOM tree depends somewhat on the browser. In this
example, the manipulation should be rather compatible, but in some cases there could be problems.
Standard GWT and IT Mill Toolkit widgets handle many of such compatibility issues, but when doing
such low-level operations as DOM manipulation, you may need to consider them.

The structure of the DOM tree depends on how GWT renders its widgets for a specific browser. It is also
not guaranteed that the rendering does not change in future releases of GWT. You should therefore make
as few assumptions regarding the DOM structure as possible. Unfortunately, GWT does not provide a way
to set the style of, for example, cells of layout elements. The above example therefore assumes that the
Grid is a table and the <button> elements are inside <td> elements of the table. See Section 8.2.3,
“Styling GWT Widgets” below for more details on compatibility.

The widget will look as follows:

Figure 8.3. Color Picker Widget Without Styling

As you can notice, the widget will look rather uninviting without CSS styling. We will next look how to
define a default style for a GWT widget.

8.2.3. Styling GWT Widgets

GWT renders its widgets in the DOM tree of the web browser as HTML elements. Therefore, their style
can be defined with Cascading Style Sheets (CSS) just as in HTML. GWT Compiler supports packaging
style sheets from the source package tree. The style sheet is defined in the .gwt.xml descriptor file (see
Section 8.4.1, “GWT Module Descriptor” for details).

<!-- WidgetSet default theme -->
<stylesheet src="colorpicker/styles.css"/>

165

Developing Custom Components
Styling GWT Widgets

The style sheet path is relative to the public folder under the folder containing the .gwt.xml file.

Let us define the colorpicker/styles.css as follows.

/* Set style for the color picker table.
 This assumes that the Grid layout is rendered as a HTML <table>.*/
table.example-colorpicker {
 border-collapse: collapse;
 border: 0px;
}

/* Set color picker button style.
 This does not make assumptions about the HTML element tree as it only uses
 the class attributes of the elements.*/
.example-colorpicker .gwt-Button {
 height: 60px;
 width: 60px;
 border: none;
 padding: 0px;
}

/* Set style for the right-hand box that shows the currently selected color.
 While this may work for other implementations of the HorizontalPanel as well,
 it somewhat assumes that the layout is rendered as a table where cells
 are <td> elements. */
.colorpicker-currentcolorbox {
 width: 240px;
 text-align: center;
 vertical-align: middle !important; /* Must be !important to override GWT styling. */
}

The stylesheet makes some assumptions regarding the HTML element structure. First, it assumes that the
Grid layout is a table. Second, the custom class name, colorpicker-currentcolorbox, of the
right-hand HorizontalPanel cell was inserted in the DOM representation of the widget in the GwtCol-
orPicker implementation. Styling a button makes less assumptions. Using only class names instead of
specific element names may make a stylesheet more compatible if the HTML representation is different
in different browsers or changes in the future.

Figure 8.4. Color Picker Widget With Styling

8.3. Integrating a GWT Widget

Integration of GWT widgets with IT Mill Toolkit can be done in two basic ways: by modifying the original
class or by inheriting it and adding the integration code in the subclass. The latter way is actually the way

166

Developing Custom Components
Integrating a GWT Widget

the standard client-side components in IT Mill Toolkit are done: they simply inherit the corresponding
standard GWT widgets. For example, IButton inherits GWT Button.

The integration code has the following tasks:

• Manage CSS style class

• Receive component state from server

• Send state changes caused by user interaction to server

The integration is broken down in the following sections into server-client deserialization done in
updateFromUIDL() and client-server serialization done with updateVariable(). The complete
example of the integration of the Color Picker widget is given at the end of this section.

Naming Conventions

While the use of IT Mill Toolkit does not require the use of any particular naming conventions
for GWT widgets, some notes regarding naming may be necessary. While Java name spaces make
it possible to use identical class names in the same context, it may be useful to try to make them
more distinctive to avoid any inconvenience. GWT uses simple names for its standard widgets,
such as Button. The standard components of IT Mill Toolkit use identical or similar names, but
that does not cause any inconvenience, because the GWT widgets and server-side components
of IT Mill Toolkit are never used in the same context. For the client-side components of IT Mill
Toolkit, we use the "I" prefix, for example IButton. In the Color Picker example, we use
GwtColorPicker for the GWT widget and IColorPicker for the integration implementation. You
may wish to follow similar conventions.

8.3.1. Deserialization of Component State from Server

To receive data from the server, a widget must implement the Paintable interface and its
updateFromUIDL() method. The idea is that the method "paints" the user interface description by
manipulating the HTML tree on the browser. Typically, when using composite GWT components, most
of the DOM tree manipulation is done by standard GWT widgets.

An implementation of the updateFromUIDL() method must include some routine tasks:

• Call updateComponent() and return if it succeeds

• Manage the component identifier

• Manage a reference to the ApplicationConnection object. The widget needs to know it to be
able to initiate a server request when a browser event occurs.

The latter two of these tasks are not needed if the widget does not handle any user input that needs to be
sent to server.

The following excerpt provides a skeleton for the updateFromUIDL() method and shows how the
component identifier and connection object reference are managed by a widget.

 String uidlId;
 ApplicationConnection client;

 ...

 public void updateFromUIDL(UIDL uidl, ApplicationConnection client) {
 if (client.updateComponent(this, uidl, true))

167

Developing Custom Components
Deserialization of Component State

from Server

 return;

 this.client = client;
 uidlId = uidl.getId();

 ...
 }

The updateComponent() call has several functions important for different kinds of components. It
updates various default attributes, such as disabled, readonly, invisible, and (CSS) style at-
tributes. If the manageCaption argument is true, the call will also update the caption of the component.
By default, the caption is managed by the parent layout of the component. Components, such as a Button,
that manage the caption themselves, do not need management of the caption.

The updateComponent() is also part of the transmutation mechanism that allows a single server-side
component to have alternative client-side implementations, based on its parameters. For example, the
Button server-side component can manifest either as a clickable IButton or as a switchable ICheckBox
widget on the client-side. If the parameters are changed, the client-side widget can be replaced with another
dynamically. Determination of the correct implementation is done in a WidgetSet. If
updateComponent() returns true, the client-side engine can attempt to replace the implementation.
For more details on the transmutation mechanism, see Section 8.4, “Defining a Widget Set”.

The component identifier is used when the component needs to serialize its updated state to server. The
reference to the application connection manager is needed to make the server request. If a component does
not have any state changes that need to be sent to the server, management of the variables is not needed.
See Section 8.3.2, “Serialization of Component State to Server” below for further details.

The design of the client-side framework of IT Mill Toolkit, because the Paintable is an interface and can
not store any references. Having an API layer between GWT and custom widgets would be a much more
complicated solution.

8.3.2. Serialization of Component State to Server

User input is handled in GWT widgets with events.

User input is passed to the server using the updateVariable() method. If the immediate parameter
is false, the value is simply added to a queue to be sent to the server at next AJAX request. If the argument
is true, the AJAX request is made immediately, and will include all queued updates to variables.

if (uidl_id == null || client == null)
 return;

client.updateVariable(uidl_id, "myvariable", newvalue, immediate);

The client of the above example is a reference to the ApplicationConnection object that manages
server requests. The uidl_id argument is the UIDL identifier obtained during a updateFromUIDL()
call with uidl.getId() method.

The updateVariable() method has several varieties to send variables of different types.

168

Developing Custom Components
Serialization of Component State to

Server

Table 8.1. UIDL Variable Types

UIDL TypeDescriptionType

sString object.String

iNative integer value.int

lNative long integer value.long

fNative single-precision floating-point value.float

dNative double-precision floating-point value.double

bNative boolean value.boolean

aArray of object data. The toString() method is used to serialize each of
the objects. The content strings are escaped with escapeString(), to allow
characters such as quotes.

Object[]

The immediate argument is described below.

This serialization mechanism is intended to be as simple as possible in most cases, when the user input is
typically just one state variable, while also allowing the serialization of more complex data, if necessary.

Immediateness

Server-side components that inherit AbstractComponent have an immediate attribute, set with
setImmediate(). This attribute dictates whether a component makes a server request immediately
when its state changes, or only afterwards. For example, there is no need to send the contents of a "User-
name" TextField before the "Login" button has been clicked. On the other hand, the server can set the
TextField as immediate to receive changes for example when the component loses focus.

Most widgets should support immediateness by receiving the immediate attribute from the UIDL message
that renders the widget. The following example is extracted from the ITextField implementation.

 // Store the immediate attribute in a member variable
 private boolean immediate = false;
 ...

 public void updateFromUIDL(UIDL uidl, ApplicationConnection client) {
 if(client.updateComponent(this, uidl, true))
 return;

 // Receive and store the immediate attribute
 immediate = uidl.getBooleanAttribute("immediate");
 ...
 }

 public void onChange(Widget sender) {
 if(client != null && id != null) {
 // Use the stored immediate attribute to say whether or not
 // make the server request immediately.
 client.updateVariable(id, "text", getText() , immediate);
 }
 }

In some widgets, the immediate attribute would have little meaning, and in fact an accidental false
value would cause undesired behaviour. For example, a button is always expected to send a request to the
server when it is clicked. Such widgets can simply use true for the immediate argument in
updateVariable(). For example, IButton does as follows:

public void onClick(Widget sender) {
 if (id == null || client == null)

169

Developing Custom Components
Serialization of Component State to

Server

 return;
 client.updateVariable(id, "state", true, /* always immediate */ true);
}

8.3.3. Example: Integrating the Color Picker Widget

Below is a complete example of an integration component for the Color Picker example. It demonstrates
all the basic tasks needed for the integration of a GWT widget with its server-side counterpart component.

import com.itmill.toolkit.terminal.gwt.client.ApplicationConnection;
import com.itmill.toolkit.terminal.gwt.client.Paintable;
import com.itmill.toolkit.terminal.gwt.client.UIDL;

public class IColorPicker extends GwtColorPicker implements Paintable {

 /** Set the CSS class name to allow styling. */
 public static final String CLASSNAME = "example-colorpicker";

 /** Component identifier in UIDL communications. */
 String uidlId;

 /** Reference to the server connection object. */
 ApplicationConnection client;

 /**
 * The constructor should first call super() to initialize the component and
 * then handle any initialization relevant to IT Mill Toolkit.
 */
 public IColorPicker() {
 // The superclass has a lot of relevant initialization
 super();

 // This method call of the Paintable interface sets the component
 // style name in DOM tree
 setStyleName(CLASSNAME);
 }

 /**
 * This method must be implemented to update the client-side component from
 * UIDL data received from server.
 *
 * This method is called when the page is loaded for the first time, and
 * every time UI changes in the component are received from the server.
 */
 public void updateFromUIDL(UIDL uidl, ApplicationConnection client) {
 // This call should be made first. Ensure correct implementation,
 // and let the containing layout manage caption, etc.
 if (client.updateComponent(this, uidl, true))
 return;

 // Save reference to server connection object to be able to send
 // user interaction later
 this.client = client;

 // Save the UIDL identifier for the component
 uidlId = uidl.getId();

 // Get value received from server and actualize it in the GWT component
 setColor(uidl.getStringVariable("colorname"));
 }

 /** Override the method to communicate the new value to server. */
 public void setColor(String newcolor) {
 // Ignore if no change
 if (newcolor.equals(currentcolor.getText()))
 return;

170

Developing Custom Components
Example: Integrating the Color Picker

Widget

 // Let the original implementation to do whatever it needs to do
 super.setColor(newcolor);

 // Updating the state to the server can not be done before
 // the server connection is known, i.e., before updateFromUIDL()
 // has been called.
 if (uidlId == null || client == null)
 return;

 // Communicate the user interaction parameters to server. This call will
 // initiate an AJAX request to the server.
 client.updateVariable(uidlId, "colorname", newcolor, true);
 }
}

8.4. Defining a Widget Set

The client-side components, or in GWT terminology, widgets, must be made usable in the client-side GWT
application by defining a widget set factory that can create the widgets by their UIDL tag name. (Actually,
such a widget set factory is the client-side application.)

A widget set factory needs to inherit the default factory DefaultWidgetSet and implement the
createWidget() and resolveWidgetType() methods. The methods must call their default imple-
mentation to allow creation of the standard widgets.

The following example shows how to define a widget set factory class for the Color Picker example. The
tag name of the widget was defined in the server-side implementation of the widget (see Section 8.3.3,
“Example: Integrating the Color Picker Widget”) as colorpicker. The resolveWidgetType()
must resolve this name to the class object of the IColorPicker integration class, which is later passed to
the createWidget() method for creating an instance of the IColorPicker class.

import com.itmill.toolkit.demo.colorpicker.gwt.client.ui.IColorPicker;
import com.itmill.toolkit.terminal.gwt.client.DefaultWidgetSet;
import com.itmill.toolkit.terminal.gwt.client.Paintable;
import com.itmill.toolkit.terminal.gwt.client.UIDL;

public class ColorPickerWidgetSet extends DefaultWidgetSet {
 /** Resolves UIDL tag name to widget class. */
 protected Class resolveWidgetType(UIDL uidl) {
 final String tag = uidl.getTag();
 if ("colorpicker".equals(tag))
 return IColorPicker.class;

 // Let the DefaultWidgetSet handle resolution of default widgets
 return super.resolveWidgetType(uidl);
 }

 /** Creates a widget instance according to its class object. */
 public Paintable createWidget(UIDL uidl) {
 final Class type = resolveWidgetType(uidl);
 if (IColorPicker.class == type)
 return new IColorPicker();

 // Let the DefaultWidgetSet handle creation of default widgets
 return super.createWidget(uidl);
 }
}

The default widgets in IT Mill Toolkit actually use more than just the tag name to resolve the actual widget
class. For example, the Button server-side component, which has tag name button, can be resolved to

171

Developing Custom Components
Defining a Widget Set

either an IButton or ICheckBox widget, depending on the switch (switchMode) attribute. IT Mill
Toolkit Client-Side Engine can actually replace the client-side object of the parameters change.

8.4.1. GWT Module Descriptor

A widget set is actually a GWT application and needs to be defined in the GWT module descriptor as the
entry point of the application. A GWT module descriptor is an XML file with extension .gwt.xml.

The following example shows the GWT module descriptor of the Color Picker application. The client-side
entry point will be the WidgetSet class. We also define the default stylesheet for the color picker widget,
as described above in Section 8.2.3, “Styling GWT Widgets”.

<module>
 <!-- Inherit the NoEntry version to avoid multiple entrypoints -->
 <inherits name="com.itmill.toolkit.terminal.gwt.DefaultWidgetSetNoEntry" />

 <!-- WidgetSet default theme -->
 <stylesheet src="colorpicker/styles.css"/>

 <!-- Entry point -->
 <entry-point class="com.itmill.toolkit.demo.colorpicker.gwt.client.WidgetSet"/>

</module>

For more information about the GWT Module XML Format, please see Google Web Toolkit Developer
Guide.

8.5. Server-Side Components

Server-side components provide the API for user applications to build their user interface. Many applications
do not ever need to bother with the client-side implementation of the standard components, but those that
use their own GWT widgets need to have corresponding server-side components.

A server-side component has two basic tasks: it has to be able to serialize its state variables to the corres-
ponding client-side component, and deserialize any user input received from the client. Many of these
tasks are taken care of by the component framework.

Component Tag Name

Server-side components are identified with a unique UIDL tag name, which must be returned by
the getTag() method. The tag should follow XML rules for element names, that is, only char-
acters a-z, A-Z, 0-9, and _, and not begin with a number. Actually, as IT Mill Toolkit Release 5
uses a JSON notation for serialization, the tag syntax is more relaxed, but we nevertheless recom-
mend using a stricter syntax. UIDL is detailed in Chapter 10, User Interface Definition Language
(UIDL) together with lists of reserved tags. The server-side implementation of the Color Picker
component defines the tag as follows:

 public String getTag() {
 return "colorpicker";
 }

On the client side, this tag is mapped to a GWT widget. The mapping from server-side to client-
side components is actually one to many; a server-side component can manifest as several client-
side components, depending on its parameters. For example, a server-side Button can manifest
either as an IButton or ICheckBox in client, depending on the switchMode attribute. For the
client side, see Section 8.2, “Google Web Toolkit Widgets” above.

172

Developing Custom Components
GWT Module Descriptor

The implementation of the server-side component is broken down into server-client serialization and client-
server deserialization in the following sections. We will also present the complete example of the server-
side implementation of the Color Picker component below.

8.5.1. Server-Client Serialization

The server-side implementation of a component must be able to serialize its data into a UIDL message that
is sent to the client. You need to override the paintContent() method, defined in AbstractComponent.
You should call the superclass to allow it to paint its data as well.

The data is serialized with the variants of the addAttribute() and addVariable() methods for
different basic data types.

The UIDL API offered in PaintTarget is covered in Section 10.1, “API for Painting Components”.

8.5.2. Client-Server Deserialization

The server-side component must be able to receive state changes from the client-side widget. This is done
by overriding the changeVariables() method, defined in AbstractComponent. A component should
always call the superclass implementation in the beginning to allow it handle its variables.

The variables are given as objects in the variables map, with the same key with which they were seri-
alized on the client-side. The object type is likewise the same as given for the particular variable in
updateVariable() in the client-side.

@Override
public void changeVariables(Object source, Map variables) {
 // Let superclass read any common variables.
 super.changeVariables(source, variables);

 // Sets the currently selected color
 if (variables.containsKey("colorname") && !isReadOnly()) {
 final String newValue = (String) variables.get("colorname");
 // Changing the property of the component will
 // trigger a ValueChangeEvent
 setValue(newValue, true);
 }
}

The above example handles variable changes for a field component inheriting AbstractField. Fields have
their value as the value property of the object. Setting the value with setValue(), as above, will trigger
a ValueChangeEvent, which the user of the component can catch with a ValueChangeListener.

Contained components, such as components inside a layout, are deserialized by referencing them by their
paintable identifier or PID.

8.5.3. Extending Standard Components

Extending standard components is one way to develop new components that have some additional features.

Every component needs to have a unique UIDL tag that is used to create and communicate with widgets
on the client-side. The tag is normally unique for server-side components. The minimal requirement for
the server-side component is that you reimplement the getId() method that provides the tag.

If your extension component contains any specific state variables, you need to handle their serialization
in paintContent() and deserialization in changeVariables() and call the superclass implementation in the

173

Developing Custom Components
Server-Client Serialization

beginning. See Section 8.5.1, “Server-Client Serialization” Section 8.5.2, “Client-Server Deserialization”
above for details.

The client-side implementation goes also much like for regular custom widgets.

8.5.4. Example: Color Picker Server-Side Component

The following example provides the complete server-side ColorPicker component for the Color Picker
example. It has only one state variable: the currently selected color, which is stored as the property of the
component. Implementation of the Property interface is provided in the AbstractField superclass of the
component. The UIDL tag name for the component is colorpicker and the state is communicated
through the colorname variable.

package com.itmill.toolkit.demo.colorpicker;

import java.util.Map;
import com.itmill.toolkit.terminal.PaintException;
import com.itmill.toolkit.terminal.PaintTarget;
import com.itmill.toolkit.ui.*;

public class ColorPicker extends AbstractField {

 public ColorPicker() {
 super();
 setValue(new String("white"));
 }

 /** The property value of the field is an Integer. */
 public Class getType() {
 return String.class;
 }

 /** Tag is the UIDL element name for client-server communications. */
 public String getTag() {
 return "colorpicker";
 }

 /** Set the currently selected color. */
 public void setColor(String newcolor) {
 // Sets the color name as the property of the component.
 // Setting the property will automatically cause repainting of
 // the component with paintContent().
 setValue(newcolor);
 }

 /** Retrieve the currently selected color. */
 public String getColor() {
 return (String) getValue();
 }

 /** Paint (serialize) the component for the client. */
 public void paintContent(PaintTarget target) throws PaintException {
 // Superclass writes any common attributes in the paint target.
 super.paintContent(target);

 // Add the currently selected color as a variable in the paint target.
 target.addVariable(this, "colorname", getColor());
 }

 /** Deserialize changes received from client. */
 public void changeVariables(Object source, Map variables) {
 // Sets the currently selected color
 if (variables.containsKey("colorname") && !isReadOnly()) {
 String newValue = (String) variables.get("colorname");

174

Developing Custom Components
Example: Color Picker Server-Side

Component

 // Changing the property of the component will
 // trigger a ValueChangeEvent
 setValue(newValue,true);
 }
 }
}

8.6. Using a Custom Component

A custom component is used like any other IT Mill Toolkit component. You will, however, need to compile
the client-side widget set with the GWT Compiler.

8.6.1. Example: Color Picker Application

The following server-side example application shows how to use the Color Picker custom widget. The
example includes also server-side feedback of the user input and changing the color selection to show that
the communication of the component state works in both directions.

package com.itmill.toolkit.demo.colorpicker;

import com.itmill.toolkit.data.Property.ValueChangeEvent;
import com.itmill.toolkit.data.Property.ValueChangeListener;
import com.itmill.toolkit.ui.*;
import com.itmill.toolkit.ui.Button.ClickEvent;

/**
 * Demonstration application that shows how to use a simple
 * custom client-side GWT component, the ColorPicker.
 */
public class ColorPickerApplication extends com.itmill.toolkit.Application {
 Window main = new Window("Color Picker Demo");

 /* The custom component. */
 ColorPicker colorselector = new ColorPicker();

 /* Another component. */
 Label colorname;

 public void init() {
 setMainWindow(main);
 setTheme("demo");

 // Listen for value change events in the custom component,
 // triggered when user clicks a button to select another color.
 colorselector.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Provide some server-side feedback
 colorname.setValue("Selected color: " + colorselector.getColor());
 }
 });
 main.addComponent(colorselector);

 // Add another component to give feedback from server-side code
 colorname = new Label("Selected color: "+colorselector.getColor());
 main.addComponent(colorname);

 // Server-side manipulation of the component state
 Button button = new Button("Set to white");
 button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 colorselector.setColor("white");
 }
 });

175

Developing Custom Components
Using a Custom Component

 main.addComponent(button);
 }
}

8.6.2. Web Application Deployment

Deployment of web applications that include custom components is almost identical to the normal case
where you use only the default widget set of IT Mill Toolkit. The default case is documented in Section 3.7.3,
“Deployment Descriptor web.xml”. You only need to specify the widget set for the application in the
WebContent/WEB-INF/web.xml deployment descriptor.

The following deployment descriptor specifies the Color Picker Application detailed in the previous section.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>myproject</display-name>

 <servlet>
 <servlet-name>ColorPickerServlet</servlet-name>

<servlet-class>com.itmill.toolkit.terminal.gwt.server.ApplicationServlet</servlet-class>

 <init-param>
 <param-name>application</param-name>

<param-value>com.itmill.toolkit.demo.colorpicker.ColorPickerApplication</param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>

<param-value>com.itmill.toolkit.demo.colorpicker.gwt.ColorPickerWidgetSet</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>ColorPickerServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Project specific parameter are emphasized. Notice that the widget set name is not a file name, but the base
name for the ColorPickerWidgetSet.gwt.xml module descriptor.

As the project context root in the above example is myproject and the <url-pattern> is /*, the
URL for the application will be /myproject/.

8.7. GWT Widget Development

Development of new GWT widgets includes management of the source code tree, running and debugging
the application with the GWT Hosted Mode Browser, and compiling the widgets and the IT Mill Toolkit
Client-Side Engine to JavaScript with the GWT Compiler.

You can use any IDE for developing GWT components for IT Mill Toolkit. The examples given in this
book are for the Eclipse IDE. It allows easy launching of the GWT Hosted Mode Browser, debugging, and
running an external compiler for GWT widget sets.

176

Developing Custom Components
Web Application Deployment

8.7.1. Creating a Widget Project in Eclipse

Creation of an IT Mill Toolkit project that uses the default widget set was covered in Section 1.6, “Your
First Project with IT Mill Toolkit”. Developing custom widgets creates a number of additional requirements
for a project. Let us review the steps required for creating a project. Details for each step are given in the
subsequent sections.

1. Create a new project in the Eclipse IDE. (Section 1.6.1)

2. Import IT Mill Toolkit library JAR into the project. (Section 1.6.2)

3. Import GWT directory into the project. (Section 8.7.2 below)

4. Write the source code in a Java module. (Section 8.7.3 below)

5. Write the web.xml Deployment Descriptor for the web application.

• Define the custom widget set to use instead of the default widget set. (Section 8.6.2 above)

6. Compile the widget set to JavaScript runtime with GWT Compiler. (Section 8.7.4 below)

7. Configure the project in Apache Tomcat (or some other web container) and start the server.
(Section 1.6.6 below)

8. Either:

a. Open a web browser to use the web application.

b. Debug the widgets with Hosted Mode Browser. (Section 8.7.6)

The contents of a ready widget development project are described in Section 8.7.5, “Ready to Run”.

8.7.2. Importing GWT Installation Package

You will need to include the Google Web Toolkit in your project to develop custom widgets. The installation
directory of IT Mill Toolkit includes full GWT installation in the gwt subdirectory. The package includes
precompiled libraries and applications for the specific platform of the installation. To use the libraries, you
need to configure them in the classpath of your project as described below.

You need to copy the gwt directory to your project. You can either copy it with system tools or, if you
are using Eclipse, import the directory. Importing the directory is done as follows.

1. Right-click on the project folder in Project Explorer and select Import → Import....

2. From the Import dialog, select General → File System and click Next.

3. Click Browse button of the "From directory" field and browse to the gwt directory under the
IT Mill Toolkit installation directory. Click Ok in the file selection dialog.

4. Select the gwt entry in the list box for importing.

5. In the "Into folder" field, enter myproject/gwt. (If you do not set this, all the contents of
the gwt directory will be imported directly below the root directory of the project which is un-
desirable.)

6. Click Finish.

177

Developing Custom Components
Creating a Widget Project in Eclipse

If you copied the directory with system tools, remember to select your project and press F5 to refresh the
project.

GWT libraries must be included in the classpath of the project. Right-click on the project folder in the
Project Explorer in Eclipse and select Properties. Select Java Build Path → Libraries.

8.7.3. Creating a GWT Module

This section gives details on writing an application module that includes custom widgets.

Creating the Source Folder

While the source files can be placed in any directory in ordinary projects, usually in the src directory
directly under the project root, the widget build script described below in Section 8.7.4, “Compiling GWT
Widget Sets” as well as the GWT Hosted Mode Browser assume that source files are located under the
WebContent/WEB-INF/src folder. The source folder has to be created and designated as a source
folder for the project.

1. Right-click on the WebContent/WEB-INF folder and select New → Folder.

2. In the New Folder dialog, enter src as the Folder name and click Finish.

3. Right-click on the src folder and select Build Path → Use as Source Folder.

The folders designated as source folders are moved under the Java Resources folder in the Project Explorer
of Eclipse. This is only a display feature; the source directory remains in its original location in the
filesystem.

Creating Source Files

In Eclipse, you can insert a folder inside a source package in File → New → Folder.

Importing the ColorPicker Demo

If you want to use the Color Picker application as an application skeleton, you need to import it under the
source folder.

1. Right-click on the source folder and select Import.

2. In the Import dialog, select General → File System and click Next.

3. Browse to WebContent/WEB-INF/src/com/itmill/toolkit/demo/colorpicker/
and click Ok button in the Import from directory dialog.

4. I n t h e I n t o f o l d e r fi e l d , e n t e r
myproject/WebContent/WEB-INF/src/com/itmill/toolkit/demo/colorpicker.

5. Check the colorpicker entry in the list box.

6. Click Finish.

This will import the directory as com.itmill.toolkit.demo.colorpicker package. If you want to use it as a
skeleton for your own project, you should refactor it to some other name. Notice that you will need to re-
factor the package and application name manually in the web.xml and .gwt.xml descriptor files.

178

Developing Custom Components
Creating a GWT Module

8.7.4. Compiling GWT Widget Sets

When running an application in a regular web browser, you need to compile the IT Mill Toolkit Client-
Side Engine and your custom widget set to JavaScript. This is done with the GWT Compiler. IT Mill
Toolkit installation package includes an Ant build script build-widgetset.xml in the
WebContent/doc/example-source/ directory. To compile the Color Picker widget set example,
just change to the directory and enter:

$ ant -f build-widgetset.xml

We advice that you copy the build script to your project and use it as a template. Just set the paths in the
"configure" target and the widget set class name in the "compile-widgetset" target to suit your project.

Alternatively, you can launch the build script from Eclipse, by right-clicking the script in Package Explorer
and selecting Run As → Ant Build. Progress of the compilation is shown in the Console window.

After compilation, refresh the project by selecting it and pressing F5. This makes Eclipse scan new content
and become aware of the output of the compilation in the WebContent/ITMILL/widgetsets/ dir-
ectory. If the project is not refreshed, the JavaScript runtime is not included in the web application and
running the application will result in an error message such as the following:

Requested resource
[ITMILL/widgetsets/com.itmill.toolkit.demo.colorpicker.gwt.ColorPickerWidgetSet/
com.itmill.toolkit.demo.colorpicker.gwt.ColorPickerWidgetSet.nocache.js] not found
from filesystem or through class loader. Add widgetset and/or theme JAR to your
classpath or add files to WebContent/ITMILL folder.

Compilation with GWT is required also initially when using the Hosted Mode Browser described in Sec-
tion 8.7.6, “Hosted Mode Browser”. The compilation with the GWT Compiler must be done at least once,
as it provides files that are used also by the Hosted Mode Browser, even though the browser runs the GWT
application in Java Virtual Machine instead of JavaScript.

Warning

Because GWT supports a slightly reduced version of Java, GWT compilation can produce errors
that do not occur with the Java compiler integrated in the Eclipse IDE.

Compiling a Custom Widget Set

If you wish to use the build script to compile your own widget sets, open it in an editor. The build script
contains some instructions in the beginning of the file. You can use the compile-my-widgetset target
as a template for your own widget sets.

<!-- NOTE: Modify this example to compile your own widgetset -->
<target name="compile-widgetset" depends="init">
 <echo>Compiling com.itmill.toolkit.demo.colorpicker.gwt.ColorPickerWidgetSet.</echo>
 <echo>Modify this example ant-script to compile your own widgetsets.</echo>
 <java classname="com.google.gwt.dev.GWTCompiler"
 failonerror="yes" fork="yes" maxmemory="256m">
 <arg value="-out" />
 <arg value="${client-side-destination}" />

 <!-- Define your GWT widget set class here. -->
 <arg value="com.itmill.toolkit.demo.colorpicker.gwt.ColorPickerWidgetSet" />

 <jvmarg value="-Xss1024k"/>
 <jvmarg value="-Djava.awt.headless=true"/>
 <classpath>
 <path refid="compile.classpath"/>
 </classpath>

179

Developing Custom Components
Compiling GWT Widget Sets

 </java>
</target>

Replace the target name with your desired target name and the widget set class name with your own class
name. The -Xss parameter may be necessary if you experience stack overflow errors with the default
stack size. The -Djava.awt.headless=true is relevant in Linux/UNIX platforms to avoid some
X11 warnings.

You can now compile the widget set with the following command:

$ ant -f build-widgetset.xml

8.7.5. Ready to Run

Figure 8.5, “Annotated Project Contents” shows the contents of a ready project.

Figure 8.5. Annotated Project Contents

Notice that the Package Explorer does not correspond with the file system contents. Eclipse displays the
items marked with asterisk (*) in a logical location, instead of the physical location in the file system.

180

Developing Custom Components
Ready to Run

You can either run the application in web mode, as introduced in Section 1.6.7, or debug it with the GWT
Hosted Mode Browser, as detailed in the next section.

8.7.6. Hosted Mode Browser

The Hosted Mode Browser does not work in Linux since IT Mill Toolkit 5.3.0. The Out of Process Hosted
Mode, described in Section 8.7.7, “Out of Process Hosted Mode (OOPHM)”, is an experimental alternative
for the Hosted Mode Browser. It is platform-independent and works also on Linux.

The GWT Hosted Mode Browser allows easy debugging of GWT applications. The GWT application is
actually not compiled into JavaScript, as is done in the deployment phase, but executed as a Java application.
This makes it possible to debug the application with, for example, the Eclipse IDE.

Figure 8.6. Hosted Mode Browser

Figure 8.6, “Hosted Mode Browser” shows the hosted mode browser in action. On the left, you have the
GWT Development Shell window. It displays compilation information and possible errors that occur during
compilation. You can open a new browser window by clicking Hosted Browser.

The browser window has a Compile/Browse button, which runs the GWT Compiler to produce the
JavaScript runtime and opens a regular web browser to run the application in Web Mode. Notice that even
though it is possible to recompile the program with the button, GWT Compiler must be run before
launching the Hosted Mode Browser, as described in Section 8.7.4, “Compiling GWT Widget Sets”.

Because GWT supports a slightly reduced version of Java, GWT compilation can produce errors that do
not occur with the Java compiler integrated in the Eclipse IDE. Such errors will show up in the GWT De-
velopment Shell window.

While the Hosted Mode Browser is a fast and easy way to debug applications, it does not allow inspecting
the HTML or DOM tree or network traffic like Firebug does in Mozilla Firefox.

Configuring Hosted Mode Launching in Eclipse

This section gives details on configuring a launcher for the Hosted Mode Browser in the Eclipse IDE. We
use the QuickStart installation of IT Mill Toolkit covered in Section 1.5, “QuickStart with Eclipse” as an
example project. The project includes source code for the Color Picker demo application.

181

Developing Custom Components
Hosted Mode Browser

1. Select from menu Run → Debug... and the Debug configuration window will open. Notice that
it is not purposeful to run the Hosted Mode Browser in the "Run" mode, because its entire purpose
is to allow debugging.

2. Select the Java Application folder and click on the New button to create a new launch config-
uration.

Figure 8.7. Creating New Launch Configuration

3. Click on the created launch configuration to open it on the right-side panel. In the Main tab,
give the launch configuration a name. Define the Main class as com.google.gwt.dev.GWTShell.

182

Developing Custom Components
Hosted Mode Browser

Figure 8.8. Naming Launch Configuration

4. Switch to the Arguments tab and enter arguments for the Hosted Mode Browsed Java application.

a. In the Program arguments field, enter:

-noserver -whitelist "127.0.0.1 ^http[:][/][/]127[.]0[.]0[.]1[:]8080"
-out WebContent/ITMILL/widgetsets http://127.0.0.1:8080/myproject

The browser application, GWTShell, takes as its arguments the following parameters:

-noserver Prevents an embedded web server from starting, thereby allowing to use an
already running server.

-whitelist Adds a regular expression to the list of allowed URL patterns for the web
browser. Modify the port number from the 8080 given above as necessary.

-out Output directory for compiling widgets with GWT Compiler. The directory
must be WebContent/ITMILL/widgetsets. You can compile the
widgets either from the Hosted Mode Browser or externally as explained
later in this chapter.

URL The URL to connect to. This must be the same as the whitelist entry given
above. The port number must correspond to the port of the running web
server. The Jetty web server included in IT Mill Toolkit will run in port
8888 by default. In contrast, Apache Tomcat installed under Eclipse will
run in port 8080 by default.

b. In the VM arguments field enter, for example, -Xms256M -Xmx512M to give the hosted
mode browser more memory than the default amount. On Mac, add also
-XstartOnFirstThread.

183

Developing Custom Components
Hosted Mode Browser

Figure 8.9. GWTShell Arguments

5. In the Classpath tab, you will by default have itmill-toolkit-examples, which contains
the default classpath entries for the project. If the classpath entries for the project are sufficient,
this should be enough.

6. Click Apply to save the launch configuration.

7. Click Debug to launch the Hosted Mode Browser using the launch configuration.

See the following section for details on debugging with the Hosted Mode Browser.

Debugging with Hosted Mode Browser

The purpose of the hosted mode browser is to allow debugging client-side GWT applications, or in our
case, GWT widgets. Below is a checklist for important requirements for launching the Hosted Mode
Browser:

• GWT is installed under the project folder.

• GWT libraries are included in the project classpath.

• Widget sets have been compiled with GWT Compiler.

• web.xml descriptor is configured.

• Web server is running and listening to the correct port.

• Hosted Mode Browser launcher is configured.

Once everything is ready to start debugging, just open a source file, for example, the com.it-
mill.toolkit.demo.colorpicker.gwt.client.ui.GwtColorPicker class. Find the onClick() method. At

184

Developing Custom Components
Hosted Mode Browser

the line containing the setColor() call, right-click on the leftmost bar in the editor and select Toggle
Breakpoint from the popup menu. A small magnifying glass will appear in the bar to indicate the breakpoint.

Figure 8.10. Setting a Breakpoint

Select from menu Run → Debug... and the Debug configuration window will open. Notice that it is not
purposeful to run the Hosted Mode Browser in the "Run" mode, because its entire purpose is to allow de-
bugging.

Figure 8.11. Debugging with Hosted Mode Browser

Starting demo applications under the Hosted Mode Browser can take considerable time! This is es-
pecially true for the Reservation and Color Picker applications, which require compilation of custom
widget sets. During this time, the Hosted Mode Browser is unresponsive and does not update its window.
Compiling widgets can take 5-30 seconds, depending on the hardware.

Please refer to Eclipse IDE documentation for further instructions on using the debugger.

185

Developing Custom Components
Hosted Mode Browser

8.7.7. Out of Process Hosted Mode (OOPHM)

The Out of Process Hosted Mode of GWT is an experimental new way for debugging GWT applications
in a regular web browser. This allows using other browser debugging tools, such as Firebug, while debugging
in hosted mode.

The Hosted Mode Browser does not work in Linux since IT Mill Toolkit 5.3.0, so the OOPHM is the only
way to debug client-side code in Linux.

The OOPHM installation package of IT Mill Toolkit is a platform-independent package available separately
from the platform specific packages. Use of OOPHM requires (see more detailed notes further below):

1. Install OOPHM plugin from gwt/plugins in your browser

2. Compile custom widget sets with the GWT Compiler provided in gwt-dev-oophm.jar instead
of the platform-dependent library.

3. Launch Hosted Mode debugging with the gwt-dev-oophm.jar in class path.

If you try debugging the demo applications in the IT Mill Toolkit installation package, just install the plugin
(Step 1), launch the server in Web Mode, and then launch the Hosted Mode in debug mode (Step 3) with
the included launch configuration.

The OOPHM plugin is available for Mozilla Firefox, Internet Explorer, and WebKit based browsers. You
should install the plugin from the browser by opening the plugin file for your browser in the gwt/plugins
directory. The Firefox plugin directory contains two plugins; you should normally use the
oophm-xpcom.xpi plugin.

The installation package contains the built-in default widget set compiled with the OOPHM, but if you
have your own widget sets (which is usually the reason why you want to use client-side debugging in the
first place), you need to compile them. If you have compiled them previously with a regular installation
of IT Mill Toolkit, you need to recompile them with the GWT Compiler provided in the
gwt-dev-oophm.jar library. Compiling GWT widget sets is covered in Section 8.7.4, “Compiling
GWT Widget Sets”. The compilation of OOPHM widget sets uses a large amount of stack memory, so if
the JVM default is too small, you should set it explicitly in compile-widgetset.xml with the following
parameter for the Java process (currently included in the example build script):

 <jvmarg value="-Xss1024k"/>

Launching the debugging is done just as described in Section 8.7.6, “Hosted Mode Browser” for the regular
Hosted Mode Browser, except that you must include the gwt-dev-oophm.jar library in the class path
instead of the platform specific library. Launching the application with the debug configuration will contact
the plugin in your browser and automatically opens the configured page.

186

Developing Custom Components
Out of Process Hosted Mode (OOPHM)

Chapter 9. Advanced Web Application
Topics
9.1. Debug and Production Mode

IT Mill Toolkit applications can be run in two modes: debug mode and production mode. The debug mode,
which is on by default, enables a number of built-in debug features for the developers. The features include:

• Debug Window for accessing debug functionalities

• Display debug information in the Debug Window and server console.

• Analyze layouting button that analyzes the layout for possible problems.

Starting from IT Mill Toolkit version 5.3.0, all applications are by default run in the debug mode. The
production mode can be enabled (and debug mode thereby disabled) by adding a productionMode=true
parameter to the servlet context in the web.xml deployment descriptor:

<context-param>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
 <description>IT Mill Toolkit production mode</description>
</context-param>

Enabling the production mode disables the debug features, thereby preventing users from easily inspecting
the inner workings of the application from the browser.

9.1.1. Debug Mode

Running an application in the debug mode enables the client-side Debug Window in the browser. You can
open the Debug Window by adding "?debug" to the application URL, e.g.,
http://localhost:8080/myapp/?debug. The Debug Window, shown in Figure 9.1, “Debug
Window”, consists of buttons controlling the debugging features and a scrollable log of debug messages.

Figure 9.1. Debug Window

Clear console Clears the log in the Debug Window.

Restart app Restarts the application.

187

Force layout Causes all currently visible layouts to recalculate their appearance. Layout
components in IT Mill Toolkit 5.3.0 and later calculate the space required
by all child components, so the layout appearance must be recalculated
whenever the size of a child component is changed. In normal applications,
this is done automatically, but when you do themeing or alter the CSS
with Firebug, you may need to force all layouts to recalculate themselves,
taking into account the recently made changes.

Analyze layouts This is described in the following section.

If you use the Firebug plugin in Mozilla Firefox, the log messages will also be printed to the Firebug console.
In such a case, you may want to enable client-side debugging without showing the Debug Window with
"?debug=quiet" in the URL. In the quiet debug mode, log messages will only be printed to the Firebug
console.

9.1.2. Analyzing Layouts

The Analyze layouts button analyzes the currently visible layouts and makes a report of possible layout
related problems. All detected layout problems are displayed in the log and also printed to the console.

The most common layout problem is caused by placing a component that has a relative size inside a con-
tainer (layout) that has undefined size, e.g., adding a 100% wide Panel inside a HorizontalLayout with
no width specification. In such a case, the error will look as shown below:

IT Mill Toolkit DEBUG
- Window/1a8bd74 "My window" (width: MAIN WINDOW)
 - HorizontalLayout/1cf243b (width: UNDEFINED)
 - Panel/12e43f1 "My panel" (width: RELATIVE, 100.0 %)
Layout problem detected: Component with relative width inside a HorizontalLayout with no
 width defined
Relative sizes were replaced by undefined sizes, components may not render as expected.

This particular error tells that the Panel "My panel" is 100% wide while the width of the containing Hori-
zontalLayout is undefined. The components will be rendered as if the the width of the contained Panel
was undefined, which might not be what the developer wanted. There are two possible fixes for this case:
if the Panel should fill the main window horizontally, set a width for the HorizontalLayout (e.g. 100%
wide), or set the width of the Panel to "undefined" to render the it as it is currently rendered but avoiding
the warning message.

The same error is shown in the Debug Window in a slightly different form and with an additional feature
(see Figure 9.2, “Debug Window Showing the Result of Analyze layouts.”). Checking the Emphasize
component in UI box will turn the background of the component that caused a warning red, making it
easy for the developer to figure out which component each warning relates to. The messages will also be
displayed hierarchically, as a warning from a containing component often causes more warnings from its
child components. A good rule of thumb is to work on the upper-level problems first and only after that
worry about the warnings from the children.

188

Advanced Web Application Topics
Analyzing Layouts

Figure 9.2. Debug Window Showing the Result of Analyze layouts.

9.1.3. Custom Layouts

CustomLayout components can not be analyzed in the same way as other layouts. For custom layouts,
the Analyze layouts button analyzes all contained relative-sized components and checks if any relative
dimension is calculated to zero so that the component will be invisible. The error log will display a warning
for each of these invisible components. It would not be meaningful to emphasize the component itself as
it is not visible, so when you select such an error, the parent layout of the component is emphasized if
possible.

9.1.4. Debug Functions for Component Developers

You can take advantage of the debug mode when developing client-side components. The static function
ApplicationConnection.getConsole() will return a reference to a Console object which contains
logging methods such as log(String msg) and error(String msg). These functions will print
messages to the Debug Window and Firebug console in the same way as other debugging functionalities
of IT Mill Toolkit do. No messages will be printed if the Debug Window is not open or if the application
is running in production mode.

9.2. Special Characteristics of AJAX Applications

This section is intended for people familiar with the development of either traditional web applications or
desktop applications, who are entering AJAX enabled web application development. AJAX application
development has a few special characteristics with respect to other types of applications. Possibly the most
important one is how the display is managed in the web browser.

The web was originally not built for applications, but for hypertext pages that you can view with a browser.
The purpose of web pages is to provide content for the user. Application software has a somewhat different
purpose; usually to allow you to work on some data or content, much of which is not ever intended to be
accessible through a web browser as web pages. As the web is inherently page-based, conventional web
applications had to work with page requests and output HTML as response. JavaScript and AJAX have
made it possible to let go of the pages.

Pages are largely an unknown concept to conventional desktop applications. At most, desktop applications
can open multiple windows, but usually they work with a single main window, with an occasional dialog
window here and there. Same goes usually for web applications developed with IT Mill Toolkit: an applic-
ation typically runs on a single page, changing the layout as needed and popping up dialog boxes.

Not having to load pages and use hyperlinks to communicate all user interaction is a relief for application
development. However, they are an important feature that ordinary desktop applications lack. They allow
referencing different functionalities of an application or resources managed by the application. They are
also important for integration with external applications.

189

Advanced Web Application Topics
Custom Layouts

Certain resources can be identified through a URI or Universal Resource Identifier. A URI can easily be
passed around or stored as a bookmark. We will see in Section 9.3.1, “URI Handlers” how you can retrieve
the URI of a page request. Similarly, a page request can have query parameters, which can be handled as
detailed in Section 9.3.2, “Parameter Handlers”.

Using URIs or request parameters to access functionalities or content is not as straight-forward as in con-
ventional page-based web applications. IT Mill Toolkit, just as any other AJAX framework, uses browser
cookies not just for tracking users but also for tracking the application state. Cookies are unique in a
browser, so any two windows share the same cookies and therefore also the state. The advantage is that
you can close your browser and open it again and the application will be in the state where you left off
(except for components such as text fields which did not have the immediate attribute enabled). The disad-
vantage is that there is no good way to distinguish between the windows, so there can usually be only a
single application window. Even if there were several, you would have trouble with synchronization of
application data between windows. Many conventional page-based web applications simply ignore out-
of-sync situations, but such situations are risky for application platforms that are intended to be stable.
Therefore it is safer to work with a single browser window. If you wish to have multiple windows in your
application, you can create them inside the main window as Window objects. A URI can be used to fetch
resources that have no particular state or to provide an entry point to the application.

9.3. Resources

In addition to high-level resource classes described in Section 3.5, “Referencing Resources”, IT Mill Toolkit
provides low-level facilities for retrieving the URI and other parameters of HTTP requests. In the following,
we will look into low-level interfaces for handling URIs and parameters to provide resources and function-
alities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in IT Mill Toolkit or in
AJAX applications generally. See Section 9.2, “Special Characteristics of AJAX Applications” for reasons.

9.3.1. URI Handlers

The URI parameter for the application is useful mainly for two purposes: for providing some special
functionality according to the URI or for providing dynamic content. Dynamic content can also be provided
with StreamResource.

You can retrieve the URI for the HTTP request made for your application by implementing the com.it-
mill.toolkit.terminal.URIHandler interface. The handler class needs to be registered in the main window
object of your application with the addURIHandler() method. You then get the URI by implementing
the handleURI() method. The method gets two parameters: a context and a URI relative to the context.
The context is the base URI for your application.

 public void init() {
 final Window main = new Window("Hello window");
 setMainWindow(main);

 URIHandler uriHandler = new URIHandler() {
 public DownloadStream handleURI(URL context, String relativeUri) {
 // Do something here
 System.out.println("handleURI=" + relativeUri);
 return null; // Should be null unless providing dynamic data.
 }
 };
 main.addURIHandler(uriHandler);

 }

190

Advanced Web Application Topics
Resources

If you have multiple URI handlers attached to a window, they are executed after one another. The URI
handlers should return null, unless you wish to provide dynamic content with the call. Other URI handlers
attached to the window will not be executed after some handler returns non-null data. The combined
parameter and URI handler example below shows how to create dynamic content with a URI handler.

Notice that if you do provide dynamic content with a URI handler, the dynamic content is returned in the
HTTP response. If the handler makes any changes to the UI state of the application, these changes are not
rendered in the browser, as they are usually returned in the HTTP response made by the Application object
and now the custom URI handler overrides the default behaviour. If your client-side code makes a server
call that does update the UI state, the client-side must initiate an update from the server. For example, ff
you have an integration situation where you make a JavaScript call to the server, handle it the request with
a URI handler, and the server state changes as a side-effect, you can use the itmill.forceSync()
method to force the update.

9.3.2. Parameter Handlers

You can retrieve the parameters passed to your application by implementing the com.itmill.toolkit.termin-
al.ParameterHandler interface. The handler class needs to be registered in the main window object of
your application with the addParameterHandler() method. You then get the parameters in the
handleParameters() method. The parameters are passes as a map from string key to a vector of
string values.

class MyParameterHandler implements ParameterHandler {
 public void handleParameters(Map parameters) {
 // Print out the parameters to standard output
 for (Iterator it = parameters.keySet().iterator(); it.hasNext();) {
 String key = (String) it.next();
 String value = ((String[]) parameters.get(key))[0];
 System.out.println("Key: "+key+", value: "+value);
 }
 }
}

The parameter handler is not called if there are no parameters. Parameter handler is called before the URI
handler, so if you handle both, you might typically want to just store the URI parameters in the parameter
handler and do actual processing in URI handler. This allows you, for example, to create dynamic resources
based on the URI parameters.

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.net.URL;
import java.util.Map;
import javax.imageio.ImageIO;
import com.itmill.toolkit.terminal.*;

/**
 * Demonstrates handling URI parameters and the URI itself to create a dynamic
 * resource.
 */
public class MyDynamicResource implements URIHandler, ParameterHandler {
 String textToDisplay = "- no text given -";

 /**
 * Handle the URL parameters and store them for the URI handler to use.
 */
 public void handleParameters(Map parameters) {
 // Get and store the passed HTTP parameter.
 if (parameters.containsKey("text"))
 textToDisplay = ((String[])parameters.get("text"))[0];
 }

191

Advanced Web Application Topics
Parameter Handlers

 /**
 * Provides the dynamic resource if the URI matches the resource URI. The
 * matching URI is "/myresource" under the application URI context.
 *
 * Returns null if the URI does not match. Otherwise returns a download
 * stream that contains the response from the server.
 */
 public DownloadStream handleURI(URL context, String relativeUri) {
 // Catch the given URI that identifies the resource, otherwise let other
 // URI handlers or the Application to handle the response.
 if (!relativeUri.startsWith("myresource"))
 return null;

 // Create an image and draw some background on it.
 BufferedImage image = new BufferedImage (200, 200, BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);
 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);
 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);

 // Use the parameter to create dynamic content.
 drawable.setColor(Color.black);
 drawable.drawString("Text: "+textToDisplay, 75, 100);

 try {
 // Write the image to a buffer.
 ByteArrayOutputStream imagebuffer = new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 // Return a stream from the buffer.
 ByteArrayInputStream istream = new
ByteArrayInputStream(imagebuffer.toByteArray());
 return new DownloadStream (istream,null,null);
 } catch (IOException e) {
 return null;
 }
 }
}

When you use the dynamic resource class in your application, you obviously need to provide the same in-
stance of the class as both types of handler:

MyDynamicResource myresource = new MyDynamicResource();
mainWindow.addParameterHandler(myresource);
mainWindow.addURIHandler(myresource);

192

Advanced Web Application Topics
Parameter Handlers

Figure 9.3. Dynamic Resource with URI Parameters

9.4. Shortcut Keys

Shortcut keys can be defined as actions using the ShortcutAction class. To handle key presses, you need
to define an action handler by implementing the Handler interface. The interface has two methods that
you need to implement: getActions() and handleAction().

The getActions() interface method must return an array of Action objects for the component specified
with the second parameter for the method, the sender of an action. For a keyboard shortcut, you use a
ShortcutAction. The implementation of the method should look somewhat as follows:

 public Action[] getActions(Object target, Object sender) {
 Action[] actions = new Action[1];

 // Set the action for the requested component
 if (sender == ok) {
 // Bind the unmodified Enter key to the Ok button.
 actions[0] = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);
 } else if (sender == cancel) {
 // Bind "C" key modified with Alt to the Cancel button.
 actions[0] = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C, new int[] {
 ShortcutAction.ModifierKey.ALT});
 } else
 return null;
 return actions;
 }

The method takes a symbolic caption for the action; this is largely irrelevant for shortcut actions. The
second parameter is the keycode, as defined in ShortcutAction.KeyCode interface. Currently, the following
keycodes are allowed:

Keys A to Z Normal letter keys

F1 to F12 Function keys

BACKSPACE, DELETE, ENTER,
ESCAPE, INSERT, TAB

Control keys

NUM0 to NUM9 Number pad keys

ARROW_DOWN, ARROW_UP,
ARROW_LEFT, ARROW_RIGHT

Arrow keys

193

Advanced Web Application Topics
Shortcut Keys

HOME, END, PAGE_UP,
PAGE_DOWN

Other movement keys

The third parameter is an array of modifier keys, as defined in the ShortcutAction.ModifierKey interface.
The following modifier keys are allowed: ALT, CTRL, and SHIFT. The modifier keys can be combined;
for example, the following defines shortcut key combination Ctrl-Shift-S:

ShortcutAction("Ctrl+Shift+S",
 ShortcutAction.KeyCode.S, new int[] {
 ShortcutAction.ModifierKey.CTRL,
 ShortcutAction.ModifierKey.SHIFT});

The following example demonstrates the definition of a default button for a user interface, as well as a
normal shortcut key, Alt-C for clicking the Cancel button.

import com.itmill.toolkit.event.Action;
import com.itmill.toolkit.event.ShortcutAction;
import com.itmill.toolkit.event.Action.Handler;
import com.itmill.toolkit.ui.*;

public class DefaultButtonExample extends CustomComponent implements Handler {
 // Define and create user interface components
 Panel panel = new Panel("Login");
 VerticalLayout formlayout = new VerticalLayout();
 TextField username = new TextField("Username");
 TextField password = new TextField("Password");
 HorizontalLayout buttons = new HorizontalLayout();

 // Create buttons and define their listener methods. Here we use parameterless
 // methods so that we can use same methods for both click events and keyboard
 // actions.
 Button ok = new Button("OK", this, "okHandler");
 Button cancel = new Button("Cancel", this, "cancelHandler");

 public DefaultButtonExample() {
 // Set up the user interface
 setCompositionRoot(panel);
 panel.addComponent(formlayout);
 formlayout.addComponent(username);
 formlayout.addComponent(password);
 formlayout.setStyle("form");
 formlayout.addComponent(buttons);
 buttons.addComponent(ok);
 buttons.addComponent(cancel);

 // Set focus to username
 username.focus();

 // Set this object as the action handler for actions related to the Ok
 // and Cancel buttons.
 ok.addActionHandler(this);
 cancel.addActionHandler(this);
 }

 /**
 * Retrieve actions for a specific component. This method will be called for each
 * object that has a handler; in this example the Ok and Cancel buttons.
 **/
 public Action[] getActions(Object target, Object sender) {
 Action[] actions = new Action[1];

 // Set the action for the requested component
 if (sender == ok) {
 // Bind the unmodified Enter key to the Ok button.
 actions[0] = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);

194

Advanced Web Application Topics
Shortcut Keys

 } else if (sender == cancel) {
 // Bind "C" key modified with Alt to the Cancel button.
 actions[0] = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C, new int[] {
 ShortcutAction.ModifierKey.ALT});
 } else
 return null;
 return actions;
 }

 /**
 * Handle actions received from keyboard. This simply directs the actions to
 * the same listener methods that are called with ButtonClick events.
 **/
 public void handleAction(Action action, Object sender, Object target) {
 if (target == ok)
 this.okHandler();
 if (target == cancel)
 this.cancelHandler();
 }

 public void okHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("OK clicked"));
 }

 public void cancelHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("Cancel clicked"));
 }
}

Notice that the keyboard actions are handled from the entire page. This can cause problems if you have
components that require a certain key. For example, multi-line TextField requires the Enter key. There
is currently no way to filter the shortcut actions out while the focus is inside some specific component, so
you need to avoid such conflicts.

9.5. Printing

IT Mill Toolkit does not currently have any special support for printing. Printing on the server-side is
anyhow largely independent from the web UI of an application. You just have to take care that the printing
does not block server requests, possibly by running printing in another thread.

For client-side printing, most browsers support printing the web page. The print() method in JavaScript
opens the print window of the browser. You can easily make a HTML button or link that prints the current
page by placing the custom HTML code inside a Label.

main.addComponent(new Label("<input type='button' onClick='print()' value='Click to
Print'/>", Label.CONTENT_XHTML));

This button would print the current page. Often you want to be able to print a report or receipt and it should
not have any UI components. In such a case you could offer it as a PDF resource, or you could open a new
window as is done below and automatically launch printing.

// A button to open the printer-friendly page.
Button printButton = new Button("Click to Print");
main.addComponent(printButton);
printButton.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Create a window that contains stuff you want to print.
 Window printWindow = new Window("Window to Print");

 // Have some content to print.

195

Advanced Web Application Topics
Printing

 printWindow.addComponent(new Label("Here's some dynamic content."));

 // To execute the print() JavaScript, we need to run it
 // from a custom layout.
 CustomLayout scriptLayout = new CustomLayout("printpage");
 printWindow.addComponent (scriptLayout);

 // Add the printing window as an application-level window.
 main.getApplication().addWindow(printWindow);

 // Open the printing window as a new browser window
 main.open(new ExternalResource(printWindow.getURL()), "_new");
 }
});

How the browser opens the window, as an actual window or just a tab, depends on the browser. Notice
that above we create a new window object each time the print button is clicked, which leads to unused
window objects. If this is a real problem, you might want to reuse the same window object or clean up the
old ones - it's ok because the user doesn't interact with them later anyhow.

You will also need a custom layout that contains the print() JavaScript function that launches the
printing. Notice that the custom layout must contain also another element (below a <div>) in addition to
the <script> element.

<div>This is some static content.</div>

<script type='text/javascript'>
 print();
</script>

Printing as PDF would not require creating a Window object, but you would need to provide the content
as a static or a dynamic resource for the open() method. Printing a PDF file would obviously require a
PDF viewer cabability (such as Adobe Reader) in the browser.

196

Advanced Web Application Topics
Printing

Chapter 10. User Interface Definition
Language (UIDL)

User Interface Definition Language (UIDL) is a language for serializing user interface contents and changes
in responses from web server to a browser. The idea is that the server-side components "paint" themselves
to the screen (a web page) with the language. The UIDL messages are parsed in the browser and translated
to GWT widgets.

The UIDL is used through both server-side and client-side APIs. The server-side API consists of the
PaintTarget interface, described below in Section 10.1, “API for Painting Components”. The client-side
interface depends on the implementation of the client-side engine. In IT Mill Toolkit Release 5, the client-
side engine uses the Google Web Toolkit framework. Painting the user interface with a GWT widget is
described in Section 8.2, “Google Web Toolkit Widgets”.

UIDL supports painting either the entire user interface or just fragments of it. When the application is
started by opening the page in a web browser, the entire user interface is painted. If a user interface com-
ponent changes, only the changes are painted.

Since IT Mill Toolkit Release 5, the UIDL communications are currently done using JSON (JavaScript
Object Notation), which is a lightweight data interchange format that is especially efficient for interfacing
with JavaScript-based AJAX code in the browser. The use of JSON as the interchange format is largely
transparent; IT Mill Toolkit version 4 and the older versions used an XML-based UIDL representation
with the same API. Nevertheless, the UIDL API uses XML concepts such as attributes and elements. Below,
we show examples of a Button component in both XML and JSON notation.

With XML notation:

<button id="PID2" immediate="true" caption="My Button" focusid="1">
 <boolean id="v1" name="state" value="false"></boolean>
</button>

With JSON notation:

["button",
 {"id": "PID2",
 "immediate":true,
 "caption": "My Button",
 "focusid":1,
 "v":{"state":false}
 }
]

Components are identified with a PID or paintable identifier in the id attribute. Each component instance
has its individual PID, which is usually an automatically generated string, but can be set manually with
setDebugId() method.

Section 10.2, “JSON Rendering” below gives further details on JSON. For more information about handling
UIDL messages in the client-side components, see Chapter 8, Developing Custom Components.

You can track and debug UIDL communications easily with the Firebug extension for Mozilla Firefox, as
illustrated in Section 10.2, “JSON Rendering” below.

197

10.1. API for Painting Components

Serialization or "painting" of user interface components from server to the client-side engine running in
the browser is done through the PaintTarget interface. In IT Mill Toolkit Release 5, the only implement-
ation of the interface is the JsonPaintTarget, detailed in Section 10.2, “JSON Rendering” below.

The abstract AbstractComponent class allows easy painting of user interface components by managing
many basic tasks, such as attributes common for all components. Components that inherit the class need
to implement the abstract getTag() method that returns the UIDL tag of the component. For example,
the implementation for the Button component is as follows:

 public String getTag() {
 return "button";
 }

AbstractComponent implements the paint() method of the Paintable interface to handle basic tasks
in painting, and provides paintContent() method for components to paint their special contents. The
method gets the PaintTarget interface as its parameter. The method should call the default implementation
to paint any common attributes.

 /* Paint (serialize) the component for the client. */
 public void paintContent(PaintTarget target) throws PaintException {
 // Superclass writes any common attributes in the paint target.
 super.paintContent(target);

 // Set any values as variables of the paint target.
 target.addVariable(this, "colorname", getColor());
 }

Serialized data can be attributes or variables, serialized with the addAttribute() and addVariable()
methods, respectively. You must always serialize the attributes first and the variables only after that.

The API provides a number of variations of the methods for serializing different basic data types. The
methods support the native Java data types and strings of the String class. addVariable() also supports
vectors of strings.

Contained components are serialized by calling the paint() method of a sub-component, which will
call the paintContent() for the sub-component, allowing the serialization of user interfaces recursively.
The paint() method is declared in the server-side Paintable interface and implemented in the abstract
base classes, AbstractComponent and AbstractComponentContainer (for layouts).

Layout components have to serialize the essential attributes and variables they need, but not the contained
components. The AbstractComponentContainer and AbstractLayout baseclasses manage the recursive
painting of all the contained components in layouts.

The AbstractField provides an even higher-level base class for user interface components. The field
components hold a value or a property, and implement the Property interface to access this property. For
example the property of a Button is a Boolean value.

 public void paintContent(PaintTarget target) throws PaintException {
 super.paintContent(target);

 // Serialize the switchMode as an attribute
 if (isSwitchMode())
 target.addAttribute("type", "switch");

 // Get the state of the Button safely
 boolean state;
 try {
 state = ((Boolean) getValue()).booleanValue();

198

User Interface Definition Language
(UIDL)

API for Painting Components

 } catch (NullPointerException e) {
 state = false;
 }
 target.addVariable(this, "state", state);

 }

10.2. JSON Rendering

IT Mill Toolkit 5 uses JSON, a lightweight data-interchange format, to communicate UI rendering with
the browser, because it is very fast to parse compared to XML. JSON messages are essentially JavaScript
statements that can be directly evaluated by the browser. The client-side engine of IT Mill Toolkit parses
and evaluates the UIDL messages with the JSON library that comes with the Google Web Toolkit.

Section 2.2.3, “JSON” gave a general introduction to JSON as part of the architecture of IT Mill Toolkit.
In this section, we look into the technical details of the format. The technical details of the JSON messages
are useful mainly for debugging purposes, for example using the Firebug plugin for Mozilla Firefox.

To view a UIDL message, open the Firebug panel in Firefox, select Net tab, select a "POST UIDL" request,
open the Response tab, and click Load Response. This displays the entire UIDL message, as shown in
Figure 10.1, “Debugging UIDL Messages with Firebug” below.

Figure 10.1. Debugging UIDL Messages with Firebug

JSON messages are represented as nested lists and associative arrays (objects with named properties) in
JavaScript syntax. At the top level, we can find an associative array with the following fields:

changes Changes to the UI caused by the request.

meta Meta-information regarding the response and the application state.

resources Information about application resources.

199

User Interface Definition Language
(UIDL)

JSON Rendering

locales Locale-specific data for locale-dependent components, such as names of months
and weekdays.

The "changes" field contains the actual UI changes as a list of components. Components that can contain
other components are represented in a recursive list structure.

A component is represented as a list that first contains the UIDL tag of the component, which identifies
its class, followed by data fields. The basic representation of component data as attributes and variables is
defined in the base classes of the framework. Attributes are represented as an associative array and variables
as a separate associative array inside the special "v" attribute. For example, a Button component is com-
municated with a JSON representation such as the following:

["button",
 {"id": "PID5",
 "immediate": true,
 "caption": "7",
 "v":{"state":false}}
]

A component can give its data also in additional fields in the list instead of the attributes or variables, as
is done for the Label component:

["label",
 {"id": "PID4",
 "width": "100.0%"},
 "Some text here"]

The meta-information field can contain certain types of information, which are not displayed in the UI,
but used by the client-side engine. The repaintAll parameter tells that the changes include the entire
window contents, not just partial changes. Other data includes redirection details for expired sessions.

200

User Interface Definition Language
(UIDL)

JSON Rendering

Bibliography
[biblio.gwt-guide] Google Web Toolkit Developer Guide.

http://code.google.com/webtoolkit/documentation/com.google.gwt.doc.DeveloperGuide.html

201

202

